【題目】定義在(0, )上的函數(shù)f(x),f′(x)是它的導(dǎo)函數(shù),且恒有f(x)>f′(x)tanx成立,則( )
A.
B.
C.
D.
【答案】A
【解析】解:∵x∈(0, ),∴sinx>0,cosx>0,
由f(x)>f′(x)tanx,得f(x)cosx>f′(x)sinx.
即f′(x)sinx﹣f(x)cosx<0
構(gòu)造函數(shù)g(x)= ,
則g′(x)= <0,
∴函數(shù)g(x)在x∈(0, ),上單調(diào)遞減,
∴ ,
∴ ,
故選:A.
【考點精析】掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性是解答本題的根本,需要知道一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=x3+mlog2(x+ )(m∈R,m>0),則不等式f(m)+f(m2﹣2)≥0的解是 . (注:填寫m的取值范圍)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)已知函數(shù)f(x)=
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.
(2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺儀器需增加投入100元,已知總收益滿足函數(shù):
其中 x 是儀器的月產(chǎn)量.
(1)將利潤表示為月產(chǎn)量 的函數(shù);
(2)當(dāng)月產(chǎn)量 為何值時,公司所獲利潤最大?最大利潤是多少元?(總收益=總成本+利潤)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時, .現(xiàn)已畫出函數(shù)在軸左側(cè)的圖象,如圖所示,并根據(jù)圖象:
(1)直接寫出函數(shù), 的增區(qū)間;
(2)寫出函數(shù), 的解析式;
(3)若函數(shù), ,求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處的切線經(jīng)過點
(1)討論函數(shù)的單調(diào)性;
(2)若不等式恒成立,求實數(shù)的取值范圍.
【答案】(1)在單調(diào)遞減;(2)
【解析】試題分析: (1)利用導(dǎo)數(shù)幾何意義,求出切線方程,根據(jù)切線過點,求出函數(shù)的解析式; (2)由已知不等式分離出,得,令,求導(dǎo)得出 在 上為減函數(shù),再求出的最小值,從而得出的范圍.
試題解析:(1)
令∴
∴ 設(shè)切點為
代入
∴
∴
∴在單調(diào)遞減
(2)恒成立
令
∴在單調(diào)遞減
∵
∴
∴在恒大于0
∴
點睛: 本題主要考查了導(dǎo)數(shù)的幾何意義以及導(dǎo)數(shù)的應(yīng)用,包括求函數(shù)的單調(diào)性和最值,屬于中檔題. 注意第二問中的恒成立問題,等價轉(zhuǎn)化為求的最小值,直接求的最小值比較復(fù)雜,所以先令,求出在 上的單調(diào)性,再求出的最小值,得到的范圍.
【題型】解答題
【結(jié)束】
22
【題目】已知是橢圓的兩個焦點, 為坐標(biāo)原點,圓是以為直徑的圓,一直線與圓相切并與橢圓交于不同的兩點.
(1)求和關(guān)系式;
(2)若,求直線的方程;
(3)當(dāng),且滿足時,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解籃球愛好者小李的投籃命中率與打籃球時間之間的關(guān)系,下表記錄了小李某月1號到5號每天打籃球時間x單位:小時)與當(dāng)天投籃命中率y之間的關(guān)系:
時間x | 1 | 2 | 3 | 4 | 5 |
命中率y | 0.4 | 0.5 | 0.6 | 0.6 | 0.4 |
(1)求小李這5天的平均投籃命中率;
(2)用線性回歸分析的方法,預(yù)測小李該月6號打6小時籃球的投籃命中率. .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若三個數(shù)a,1,c成等差數(shù)列(其中a≠c),且a2 , 1,c2成等比數(shù)列,則 的值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com