【題目】考慮的方格表,其中每個方格內(nèi)均填有數(shù)字0.每次操作可先選定三個實數(shù)、、,然后選定一行,將這一行每個方格中的數(shù)都加上(為該方格所在的列數(shù),);或選定一列,將這一列每個方格中的數(shù)都加上(為該方格所在的行數(shù),),問:能否經(jīng)過有限次操作,使該方格表中四個角的數(shù)字變成1,而其他格的數(shù)字仍為0?
【答案】見解析
【解析】
不能.
反證法.
假設(shè)能經(jīng)過有限次操作使方格表變?yōu)樗膫角均為1,而其他所有方格的數(shù)字仍為0.
考慮方格表左上角的子方格表.
設(shè)經(jīng)過有限次操作變換后,第行第列中的數(shù)為.
注意到,對任意二次函數(shù)都有
.
故任意操作均不改變的值,即為不變量.
又初始狀態(tài)方格表中所有方格中的數(shù)均為0,則該不變量為0.
而所要求達(dá)到的形式為,且,
與該結(jié)論矛盾.
故假設(shè)不成立,即不能經(jīng)過有限次操作使方格表中的數(shù)字變?yōu)橐蟮男问剑?/span>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點的坐標(biāo)為,圓的方程為,動點在圓上運動,點為延長線上一點,且.
(1)求點的軌跡方程.
(2)過點作圓的兩條切線, ,分別與圓相切于點, ,求直線的方程,并判斷直線與點所在曲線的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)將要舉行校園歌手大賽,現(xiàn)有4男3女參加,需要安排他們的出場順序.(結(jié)果用數(shù)字作答)
(1)如果3個女生都不相鄰,那么有多少種不同的出場順序?
(2)如果3位女生都相鄰,且男生甲不在第一個出場,那么有多少種不同的出場順序?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一只蒼蠅和只蜘蛛被放置在方格表的一些交點處.一次操作包括以下步驟:首先,蒼蠅移動到相鄰的交點處或者原地不動,然后,每只蜘蛛移動到相鄰交點處或者原地不動(同一交點可以同時停留多只蜘蛛).假設(shè)每只蜘蛛和蒼蠅總是知道其他蜘蛛和蒼蠅的位置.
(1)找出最小的正整數(shù),使得在有限次操作內(nèi),蜘蛛能夠抓住蒼蠅,且與其初始位置無關(guān);
(2)在的空間三維方格中,(1)中的結(jié)論又是怎樣?
(注)題中相鄰是指一個交點僅有一個坐標(biāo)與另一個交點的同一坐標(biāo)不同,且差值為1;題中抓住是指蜘蛛和蒼蠅位于同一交點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知若干個長方體盒子,其棱長均為不大于正奇數(shù)的正整數(shù)(允許三棱長相同),且盒壁厚度忽略不計,每個盒子的三組對面分別染為紅、藍(lán)、黃三色,若沒有一個盒子能以同色面平行的方式裝入另一個盒子中,則稱這些盒子是“和諧的”,求最多有多少個和諧盒子?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某大型活動中,甲、乙等五名志愿者被隨機地分到A,B,C,D四個不同的崗位服務(wù),每個崗位至少有一名志愿者.
(1)求甲、乙兩人同時參加A崗位服務(wù)的概率;
(2)求甲、乙兩人不在同一個崗位服務(wù)的概率;
(3)求五名志愿者中僅有一人參加A崗位服務(wù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018以來,依托用戶碎片化時間的娛樂需求、分享需求以及視頻態(tài)的信息負(fù)載力,短視頻快速崛起;與此同時,移動閱讀方興未艾,從側(cè)面反應(yīng)了人們對精神富足的一種追求,在習(xí)慣了大眾娛樂所帶來的短暫愉悅后,部分用戶依舊對有著傳統(tǒng)文學(xué)底蘊的嚴(yán)肅閱讀青睞有加.某讀書APP抽樣調(diào)查了非一線城市和一線城市各100名用戶的日使用時長(單位:分鐘),繪制成頻率分布直方圖如下,其中日使用時長不低于60分鐘的用戶記為“活躍用戶”.
(1)請?zhí)顚懸韵?/span>列聯(lián)表,并判斷是否有99%的把握認(rèn)為用戶活躍與否與所在城市有關(guān)?
活躍用戶 | 不活躍用戶 | 合計 | |
城市 | |||
城市 | |||
合計 |
臨界值表:
0.050 | 0.010 | |
3.841 | 6.635 |
參考公式:.
(2)以頻率估計概率,從城市中任選2名用戶,從城市中任選1名用戶,設(shè)這3名用戶中活躍用戶的人數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,,.,分別是,的中點.
(Ⅰ)求證:平面;
(Ⅱ)求證:平面平面;
(Ⅲ)在圖中作出點在底面的正投影,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于數(shù)列,若存在正數(shù)p,使得對任意都成立,則稱數(shù)列為“擬等比數(shù)列”.
已知,且,若數(shù)列和滿足:,且,.
若,求的取值范圍;
求證:數(shù)列是“擬等比數(shù)列”;
已知等差數(shù)列的首項為,公差為d,前n項和為,若,,,且是“擬等比數(shù)列”,求p的取值范圍請用,d表示.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com