【題目】某中學(xué)將要舉行校園歌手大賽,現(xiàn)有43女參加,需要安排他們的出場順序.(結(jié)果用數(shù)字作答

1)如果3個(gè)女生都不相鄰,那么有多少種不同的出場順序?

2)如果3位女生都相鄰,且男生甲不在第一個(gè)出場,那么有多少種不同的出場順序?

【答案】1;(2576

【解析】

1)采用插空法, 先排4名男生,形成5個(gè)空檔,將3名女生插入其中,由此可得;

(2)3名女生捆綁作為一個(gè)人,優(yōu)先排男生甲,然后其他人全排列.

1)采用插空法,先排4名男生,有種,形成5個(gè)空檔,將3名女生插入其中,有種,最后由分步乘法計(jì)數(shù)原理可得,共有種不同的出場順序.

23名女生捆綁有種,然后優(yōu)先排男生甲有4種選擇,其余可以進(jìn)行全排列,所以共有=576

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近兩年來,以《中國詩詞大會(huì)》為代表的中國文化類電視節(jié)目帶動(dòng)了一股中國文化熱潮.某臺(tái)舉辦闖關(guān)答題比賽,共分兩輪,每輪共有4類題型,選手從前往后逐類回答,若中途回答錯(cuò)誤,立馬淘汰,若全部回答正確,就能獲得一枚復(fù)活幣并進(jìn)行下一輪答題,兩輪都通過就可以獲得最終獎(jiǎng)金.選手在第一輪闖關(guān)獲得的復(fù)活幣,系統(tǒng)會(huì)在下一輪答題中自動(dòng)使用,即下一輪重新進(jìn)行闖關(guān)答題時(shí),在某一類題型中回答錯(cuò)誤,自動(dòng)復(fù)活一次,視為答對該類題型.若某選手每輪的4類題型的通過率均分別為、、、,則該選手進(jìn)入第二輪答題的概率為_________;該選手最終獲得獎(jiǎng)金的概率為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD的底面ABCD為正方形,,EF分別是棱PC,AB的中點(diǎn).

1)求證:平面PAD;

2)若,求直線EF與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩定點(diǎn),滿足條件的點(diǎn)P的軌跡是曲線E,直線y=kx-1與曲線E交于A,B兩點(diǎn),

(1)求k的取值范圍;

(2)如果,且曲線E上存在點(diǎn)C,使,求m的值和的面積S。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱臺(tái)中,底面,四邊形為菱形,.

(1)若中點(diǎn),求證:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機(jī)抽取了40輛汽車在經(jīng)過路段上某點(diǎn)時(shí)的車速(km/h),現(xiàn)將其分成六段: , , , ,后得到如圖所示的頻率分布直方圖.

(Ⅰ)現(xiàn)有某汽車途經(jīng)該點(diǎn),則其速度低于80km/h的概率約是多少?

(Ⅱ)根據(jù)直方圖可知,抽取的40輛汽車經(jīng)過該點(diǎn)的平均速度約是多少?

(Ⅲ)在抽取的40輛且速度在(km/h)內(nèi)的汽車中任取2輛,求這2輛車車速都在(km/h)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,直線的參數(shù)方程是為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.將曲線上每一點(diǎn)的橫坐標(biāo)伸長到原來的兩倍(縱坐標(biāo)不變)得到曲線

1)求曲線的直角坐標(biāo)方程;

2)已知點(diǎn),若直線與曲線交于兩點(diǎn),且,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】考慮的方格表,其中每個(gè)方格內(nèi)均填有數(shù)字0.每次操作可先選定三個(gè)實(shí)數(shù)、、,然后選定一行,將這一行每個(gè)方格中的數(shù)都加上為該方格所在的列數(shù),);或選定一列,將這一列每個(gè)方格中的數(shù)都加上為該方格所在的行數(shù),),能否經(jīng)過有限次操作,使該方格表中四個(gè)角的數(shù)字變成1,而其他格的數(shù)字仍為0?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)外接圓上三段弧的中點(diǎn)依次為,其關(guān)于的對稱點(diǎn)依次為.若頂點(diǎn)與對應(yīng)旁切圓切點(diǎn)的連線交于一點(diǎn) (界心),的垂心,證明:在以為直徑的圓上.

查看答案和解析>>

同步練習(xí)冊答案