精英家教網 > 高中數學 > 題目詳情

【題目】是圓上的任意一點,是過點且與軸垂直的直線,是直線軸的交點,點在直線上,且滿足當點在圓上運動時,記點的軌跡為曲線

求曲線的方程;

已知直線與曲線交于兩點,點關于軸的對稱點為,設,證明:直線過定點,并求面積的最大值.

【答案】(1);(2)見解析

【解析】

1)點在圓上運動,引起點的運動,我們可以由,得到點和點坐標之間的關系式,并由點的坐標滿足圓的方程得到點坐標所滿足的方程;

2)設,,則,聯(lián)立,得韋達定理,利用直線的斜率,求直線的方程,即可直線過定點,并求出面積的最大值.

解:,,在直線上,

,

在圓上運動,

式代入式即得曲線的方程為

證明:,,則,

聯(lián)立,得,

直線的斜率,

直線的方程為

,得,

直線過定點

面積,

當且僅當,即時取等號,

面積的最大值為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某快遞公司收取快遞費用的標準是:重量不超過的包裹收費10元;重量超過的包裹,除收費10元之外,超過的部分,每超出(不足,按計算)需再收5元.

該公司對近60天,每天攬件數量統(tǒng)計如下表:

(1)某人打算將三件禮物隨機分成兩個包裹寄出,求該人支付的快遞費不超過30元的概率;

(2)該公司從收取的每件快遞的費用中抽取5元作為前臺工作人員的工資和公司利潤,剩余的作為其他費用.前臺工作人員每人每天攬件不超過150件,工資100元,目前前臺有工作人員3人,那么,公司將前臺工作人員裁員1人對提高公司利潤是否更有利?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線C的頂點在坐標原點,焦點Fx軸上,拋物線C上一點到焦點F的距離為

求拋物線C的標準方程;

設點,過點的直線l與拋物線C相交于A,B兩點,記直線MA與直線MB的斜率分別為,證明:為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校為了解高二年級學生某次數學考試成績的分布情況,從該年級的1120名學生中隨機抽取了100名學生的數學成績,發(fā)現(xiàn)都在內現(xiàn)將這100名學生的成績按照,,,,,分組后,得到的頻率分布直方圖如圖所示,則下列說法正確的是  

A. 頻率分布直方圖中a的值為

B. 樣本數據低于130分的頻率為

C. 總體的中位數保留1位小數估計為

D. 總體分布在的頻數一定與總體分布在的頻數相等

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為AB,BC的中點,點F在側棱B1B上,且, .

求證:(1)直線DE平面A1C1F;

2)平面B1DE⊥平面A1C1F.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在四個正方體中,是正方體的一條體對角線,點分別為其所在棱的中點,能得出平面的圖形為(

A.B.

C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列是首項為1的等差數列,數列滿足,且.

(1)求數列的通項公式;

(2)令,求數列的前項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知四棱錐, 平面,底面中, , ,且, 的中點.

(1)求證:平面平面;

(2)問在棱上是否存在點,使平面,若存在,請求出二面角的余弦值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,

討論函數的單調性;

在區(qū)間上恒成立求實數的取值范圍

查看答案和解析>>

同步練習冊答案