【題目】是否存在a,b,c使等式( )2+( )2+( )2+…+( )2= 對一切n∈N*都成立若不存在,說明理由;若存在,用數(shù)學(xué)歸納法證明你的結(jié)論.
【答案】解:取n=1,2,3可得 解得:a= ,b= ,c= . 下面用數(shù)學(xué)歸納法證明( )2+( )2+( )2+…+( )2= = .
即證12+22+…+n2= n(n+1)(2n+1),
①n=1時(shí),左邊=1,右邊=1,∴等式成立;
②假設(shè)n=k時(shí)等式成立,即12+22+…+k2= k(k+1)(2k+1)成立,
則當(dāng)n=k+1時(shí),等式左邊=12+22+…+k2+(k+1)2═ k(k+1)(2k+1)+(k+1)2= [k(k+1)(2k+1)+6(k+1)2]= (k+1)(2k2+7k+6)= (k+1)(k+2)(2k+3),
∴當(dāng)n=k+1時(shí)等式成立;
由數(shù)學(xué)歸納法,綜合①②當(dāng)n∈N*等式成立,
故存在a= ,b= ,c= 使已知等式成立
【解析】分別取n=1,2,3,得到關(guān)于a,b,c的方程組解得即可,先根據(jù)當(dāng)n=1時(shí),把n=1代入求值等式成立;再假設(shè)n=k時(shí)關(guān)系成立,利用變形可得n=k+1時(shí)關(guān)系也成立,綜合得到對于任意n∈N*時(shí)都成立
【考點(diǎn)精析】認(rèn)真審題,首先需要了解數(shù)學(xué)歸納法的定義(數(shù)學(xué)歸納法是證明關(guān)于正整數(shù)n的命題的一種方法).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),f(x+2)=f(x),當(dāng)x∈(0,1]時(shí),f(x)=1﹣2|x﹣ |,則函數(shù)g(x)=f[f(x)]﹣ x在區(qū)間[﹣2,2]內(nèi)不同的零點(diǎn)個(gè)數(shù)是( )
A.5
B.6
C.7
D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表是某廠的產(chǎn)量x與成本y的一組數(shù)據(jù):
產(chǎn)量x(千件) | 2 | 3 | 5 | 6 |
成本y(萬元) | 7 | 8 | 9 | 12 |
(Ⅰ)根據(jù)表中數(shù)據(jù),求出回歸直線的方程 = x (其中 = , = ﹣ )
(Ⅱ)預(yù)計(jì)產(chǎn)量為8千件時(shí)的成本.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
(1)求函數(shù)f(x)的零點(diǎn);
(2)若實(shí)數(shù)t滿足f(log2t)+f(log2 )<2f(2),求f(t)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4—4:坐標(biāo)系與參數(shù)方程】
將圓上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>2倍,得曲線C.
(Ⅰ)寫出C的參數(shù)方程;
(Ⅱ)設(shè)直線與C的交點(diǎn)為,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過線段的中點(diǎn)且與垂直的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩組各有三名同學(xué),他們在一次測驗(yàn)中的成績的莖葉圖如圖所示,如果分別從甲、乙兩組中各隨機(jī)挑選一名同學(xué),則這兩名同學(xué)成績相同的概率是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex , g(x)=ln 的圖象分別與直線y=m交于A,B兩點(diǎn),則|AB|的最小值為( )
A.2
B.2+ln2
C.e2
D.2e﹣ln
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|a﹣1<x<2a+1},B={x|0<x<1}
(1)若a= ,求A∩B.
(2)若A∩B=,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,滿足x2+y2≤1,x≥0,y≥0的點(diǎn)P(x,y)的集合對應(yīng)的平面圖形的面積為 ;類似的,在空間直角坐標(biāo)系O﹣xyz中,滿足x2+y2+z2≤1,x≥0,y≥0,z≥0的點(diǎn)P(x,y,z)的集合對應(yīng)的空間幾何體的體積為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com