試題分析:本題主要考查導(dǎo)數(shù)的運(yùn)算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值以及不等式等基礎(chǔ)知識(shí),考查函數(shù)思想、分類討論思想,考查綜合分析和解決問題的能力.第一問,先對(duì)函數(shù)求導(dǎo),由于函數(shù)有定義域,所以
恒大于0,所以對(duì)
進(jìn)行討論,當(dāng)
時(shí),導(dǎo)數(shù)恒正,所以函數(shù)在
上是增函數(shù),當(dāng)
時(shí),
的根為
,所以將定義域從
斷開,變成2部分,分別判斷函數(shù)的單調(diào)性;第二問,(1)通過第一問的分析,只有當(dāng)
時(shí),才有可能有2個(gè)零點(diǎn),需要討論函數(shù)圖像的最大值的正負(fù),當(dāng)最大值小于等于0時(shí),最多有一個(gè)零點(diǎn),當(dāng)最大值大于0時(shí),還需要判斷在最大值點(diǎn)兩側(cè)是否有縱坐標(biāo)小于0的點(diǎn),如果有就符合題意,(2)由(1)可知函數(shù)的單調(diào)性,只需判斷出
和
的正負(fù)即可,經(jīng)過分析,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032232432591.png" style="vertical-align:middle;" />,所以
.只要證明:
就可以得出結(jié)論,所以下面經(jīng)過構(gòu)造函數(shù)證明,只需求出函數(shù)的最值即可.
試題解析:(I)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032232322537.png" style="vertical-align:middle;" />.其導(dǎo)數(shù)
. 1分
①當(dāng)
時(shí),
,函數(shù)在
上是增函數(shù); 2分
②當(dāng)
時(shí),在區(qū)間
上,
;在區(qū)間
上,
.
所以
在
是增函數(shù),在
是減函數(shù). 4分
(II)①由(I)知,當(dāng)
時(shí),函數(shù)
在
上是增函數(shù),不可能有兩個(gè)零點(diǎn)
當(dāng)
時(shí),
在
是增函數(shù),在
是減函數(shù),此時(shí)
為函數(shù)
的最大值,
當(dāng)
時(shí),
最多有一個(gè)零點(diǎn),所以
,解得
, 6分
此時(shí),
,且
,
令
,則
,所以
在
上單調(diào)遞增,
所以
,即
所以
的取值范圍是
8分
②證法一:
.設(shè)
.
.
當(dāng)
時(shí),
;當(dāng)
時(shí),
;
所以
在
上是增函數(shù),在
上是減函數(shù).
最大值為
.
由于
,且
,所以
,所以
.
下面證明:當(dāng)
時(shí),
.設(shè)
,
則
.
在
上是增函數(shù),所以當(dāng)
時(shí),
.即當(dāng)
時(shí),
..
由
得
.所以
.
所以
,即
,
,
.
又
,所以
,
.
所以
.
即
.
由
,得
.所以
,
. 12分
②證法二:
由(II)①可知函數(shù)
在
是增函數(shù),在
是減函數(shù).
所以
.故
第二部分:分析:因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032232432591.png" style="vertical-align:middle;" />,所以
.只要證明:
就可以得出結(jié)論
下面給出證明:構(gòu)造函數(shù):
則:
所以函數(shù)
在區(qū)間
上為減函數(shù).
,則
,又
于是
. 又
由(1)可知
.即
12分