【題目】已知點(diǎn)在橢圓:()上,且點(diǎn)到左焦點(diǎn)的距離為3.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)為坐標(biāo)原點(diǎn),與直線平行的直線交橢圓于不同兩點(diǎn)、,求面積的最大值.
【答案】(1);(2).
【解析】
(1)點(diǎn)A在橢圓上則點(diǎn)A的坐標(biāo)滿足橢圓方程,再由利用兩點(diǎn)之間的距離公式列出方程,結(jié)合橢圓中a,b,c之間的關(guān)系即可求出a,b,c,從而求得橢圓方程;(2)設(shè)直線的方程為,與橢圓方程聯(lián)立得關(guān)于y的一元二次方程,利用韋達(dá)定理求出、關(guān)于m的表達(dá)式,由弦長(zhǎng)公式求出及點(diǎn)到的距離d,從而求得的面積的關(guān)于m的表達(dá)式,利用基本不等式可求得最大值.
(1)因?yàn)闄E圓經(jīng)過點(diǎn),所以.
設(shè)(),則由得,解得.
又,于是,解得(舍負(fù)),進(jìn)而.
故橢圓的標(biāo)準(zhǔn)方程為.
(2)因?yàn)?/span>,可設(shè)直線的方程為(),
代入并整理得.由得.
設(shè)、,則,.
所以.
又點(diǎn)到的距離,所以的面積.
故(當(dāng)且僅當(dāng)時(shí)取等號(hào)).
所以面積的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙兩品種的棉花中各抽測(cè)了25根棉花的纖維長(zhǎng)度(單位:mm),得到如圖5的莖葉圖,整數(shù)位為莖,小數(shù)位為葉,如27.1mm的莖為27,葉為1.
(1)試比較甲、乙兩種棉花的纖維長(zhǎng)度的平均值的大小及方差的大小;(只需寫出估計(jì)的結(jié)論,不需說明理由)
(2)將棉花按纖維長(zhǎng)度的長(zhǎng)短分成七個(gè)等級(jí),分級(jí)標(biāo)準(zhǔn)如表:
試分別估計(jì)甲、乙兩種棉花纖維長(zhǎng)度等級(jí)為二級(jí)的概率;
(3)為進(jìn)一步檢驗(yàn)甲種棉花的其它質(zhì)量指標(biāo),現(xiàn)從甲種棉花中隨機(jī)抽取4根,記為抽取的棉花纖維長(zhǎng)度為二級(jí)的根數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示1,已知四邊形ABCD滿足,,E是BC的中點(diǎn).將沿著AE翻折成,使平面平面AECD,F為CD的中點(diǎn),如圖所示2.
(1)求證:平面;
(2)求AE到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)是否存在常數(shù),使恒成立?若存在,求出的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的極坐標(biāo)方程;
(2)將曲線上所有點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)縮短到原來的倍,得到曲線,若與的交點(diǎn)為(異于坐標(biāo)原點(diǎn)),與的交點(diǎn)為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,過點(diǎn)的直線與橢圓交于兩點(diǎn),延長(zhǎng)交橢圓于點(diǎn),的周長(zhǎng)為8.
(1)求的離心率及方程;
(2)試問:是否存在定點(diǎn),使得為定值?若存在,求;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)曲線是焦點(diǎn)在軸上的橢圓,兩個(gè)焦點(diǎn)分別是是,,且,是曲線上的任意一點(diǎn),且點(diǎn)到兩個(gè)焦點(diǎn)距離之和為4.
(1)求的標(biāo)準(zhǔn)方程;
(2)設(shè)的左頂點(diǎn)為,若直線:與曲線交于兩點(diǎn),(,不是左右頂點(diǎn)),且滿足,求證:直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年5月20日以來,廣東自西北到東南出現(xiàn)了一次明顯降雨.為了對(duì)某地的降雨情況進(jìn)行統(tǒng)計(jì),氣象部門對(duì)當(dāng)?shù)?/span>20日~28日9天記錄了其中100小時(shí)的降雨情況,得到每小時(shí)降雨情況的頻率分布直方圖如下:
若根據(jù)往年防汛經(jīng)驗(yàn),每小時(shí)降雨量在時(shí),要保持二級(jí)警戒,每小時(shí)降雨量在時(shí),要保持一級(jí)警戒.
(1)若從記錄的這100小時(shí)中按照警戒級(jí)別采用分層抽樣的方法抽取10小時(shí)進(jìn)行深度分析.
①求一級(jí)警戒和二級(jí)警戒各抽取多少小時(shí);
②若從這10個(gè)小時(shí)中任選2個(gè)小時(shí),則這2個(gè)小時(shí)中恰好有1小時(shí)屬于一級(jí)警戒的概率.(2)若以每組的中點(diǎn)代表該組數(shù)據(jù)值,求這100小時(shí)內(nèi)的平均降雨量.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com