【題目】已知函數(shù)滿(mǎn)足=1,則等于(

A.-B.C.-D.

【答案】C

【解析】

設(shè)的最小正周期為,可得,則,再根據(jù),又,則可求出,進(jìn)而可得.

解:設(shè)的最小正周期為,因?yàn)?/span>,

所以,所以,

所以

,所以當(dāng)時(shí),,

,因?yàn)?/span>

,

整理得,因?yàn)?/span>,

,則

所以

      .                                                                                                                                                                                                                                                                                                                                                                                                                             

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某種細(xì)菌的適宜生長(zhǎng)溫度為12~27℃,為了研究該種細(xì)菌的繁殖數(shù)量(單位:個(gè))隨溫度(單位:℃)變化的規(guī)律,收集數(shù)據(jù)如下:

溫度/

14

16

18

20

22

24

26

繁殖數(shù)量/個(gè)

25

30

38

50

66

120

218

對(duì)數(shù)據(jù)進(jìn)行初步處理后,得到了一些統(tǒng)計(jì)量的值,如表所示:

20

78

4.1

112

3.8

1590

20.5

其中.

1)請(qǐng)繪出關(guān)于的散點(diǎn)圖,并根據(jù)散點(diǎn)圖判斷哪一個(gè)更適合作為該種細(xì)菌的繁殖數(shù)量關(guān)于溫度的回歸方程類(lèi)型(給出判斷即可,不必說(shuō)明理由);

2)根據(jù)(1)的判斷結(jié)果及表格數(shù)據(jù),建立關(guān)于的回歸方程(結(jié)果精確到0.1);

3)當(dāng)溫度為27℃時(shí),該種細(xì)菌的繁殖數(shù)量的預(yù)報(bào)值為多少?

參考公式:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二成估計(jì)分別為,,參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓x軸負(fù)半軸交于,離心率.

1)求橢圓C的方程;

2)設(shè)直線與橢圓C交于兩點(diǎn),連接AM,AN并延長(zhǎng)交直線x=4兩點(diǎn),若,直線MN是否恒過(guò)定點(diǎn),如果是,請(qǐng)求出定點(diǎn)坐標(biāo),如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1是由矩形ADEB,RtABC和菱形BFGC組成的一個(gè)平面圖形,其中AB=1,BE=BF=2,∠FBC=60°,將其沿AB,BC折起使得BEBF重合,連結(jié)DG,如圖2.

1)證明:圖2中的AC,G,D四點(diǎn)共面,且平面ABC⊥平面BCGE;

2)求圖2中的二面角BCGA的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線平面,垂足為,三棱錐的底面邊長(zhǎng)和側(cè)棱長(zhǎng)都為4,在平面內(nèi),是直線上的動(dòng)點(diǎn),則點(diǎn)到平面的距離為_______,點(diǎn)到直線的距離的最大值為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(某工廠生產(chǎn)零件A,工人甲生產(chǎn)一件零件A,是一等品、二等品、三等品的概率分別為,工人乙生產(chǎn)一件零件A,是一等品、二等品、三等品的概率分別為.己知生產(chǎn)一件一等品、二等品、三等品零件A給工廠帶來(lái)的效益分別為10元、5元、2.

(1)試根據(jù)生產(chǎn)一件零件A給工廠帶來(lái)的效益的期望值判斷甲乙技術(shù)的好壞;

(2)為鼓勵(lì)工人提高技術(shù),工廠進(jìn)行技術(shù)大賽,最后甲乙兩人進(jìn)入了決賽.決賽規(guī)則是:每一輪比賽,甲乙各生產(chǎn)一件零件A,如果一方生產(chǎn)的零件A品級(jí)優(yōu)干另一方生產(chǎn)的零件,則該方得分1分,另一方得分-1分,如果兩人生產(chǎn)的零件A品級(jí)一樣,則兩方都不得分,當(dāng)一方總分為4分時(shí),比賽結(jié)束,該方獲勝.Pi+4i=4,3,2,,4)表示甲總分為i時(shí),最終甲獲勝的概率.

①寫(xiě)出P0P8的值;

②求決賽甲獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若曲線處的切線的方程為,求實(shí)數(shù)的值;

2)設(shè),若對(duì)任意兩個(gè)不等的正數(shù),都有恒成立,求實(shí)數(shù)的取值范圍;

3)若在上存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了響應(yīng)國(guó)家號(hào)召,促進(jìn)垃圾分類(lèi),某校組織了高三年級(jí)學(xué)生參與了“垃圾分類(lèi),從我做起”的知識(shí)問(wèn)卷作答,隨機(jī)抽出男女各20名同學(xué)的問(wèn)卷進(jìn)行打分,作出如圖所示的莖葉圖,成績(jī)大于70分的為“合格”.

總計(jì)

合格

不合格

總計(jì)

1)由以上數(shù)據(jù)繪制成2×2聯(lián)表,是否有95%以上的把握認(rèn)為“性別”與“問(wèn)卷結(jié)果”有關(guān)?

2)從上述樣本中,成績(jī)?cè)?/span>60分以下(不含60分)的男女學(xué)生問(wèn)卷中任意選2個(gè),求這2個(gè)學(xué)生性別不同的概率.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)、,點(diǎn)是圓上一動(dòng)點(diǎn),線段的垂直平分線交線段于點(diǎn),設(shè)點(diǎn)的軌跡為曲線.且直線交曲線兩點(diǎn)(點(diǎn)軸的上方).

1)求曲線的方程;

2)試判斷直線與曲線的另一交點(diǎn)是否與點(diǎn)關(guān)于軸對(duì)稱(chēng)?

查看答案和解析>>

同步練習(xí)冊(cè)答案