【題目】如圖,點(diǎn)、,點(diǎn)是圓上一動(dòng)點(diǎn),線段的垂直平分線交線段于點(diǎn),設(shè)點(diǎn)的軌跡為曲線.且直線交曲線于兩點(diǎn)(點(diǎn)在軸的上方).
(1)求曲線的方程;
(2)試判斷直線與曲線的另一交點(diǎn)是否與點(diǎn)關(guān)于軸對稱?
【答案】(1);(2)是.
【解析】
(1)如圖所示,,點(diǎn)Q的軌跡表示的曲線為橢圓,M,N為焦點(diǎn),由此可求方程;
(2)設(shè),,將直線方程與橢圓方程聯(lián)立化為:,假設(shè)點(diǎn)C與點(diǎn)B關(guān)于x軸對稱,則.下面證明D,A, C三點(diǎn)共線.即證明:, 即證明:利用根與系數(shù)的關(guān)系證明: 0即可.
(1)如圖所示,
有
∴的軌跡是以、為焦點(diǎn)的橢圓,設(shè)其方程為
則,
∴,∴;
(2)聯(lián)立得
設(shè),
恒成立,,
假設(shè)與關(guān)于軸對稱,則,下證三點(diǎn)共線
即證,即證
∵,
∴
∴與共線,
∴與的另一交點(diǎn)與關(guān)于軸對稱
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中, ,動(dòng)點(diǎn)滿足:以為直徑的圓與軸相切.
(1)求點(diǎn)的軌跡方程;
(2)設(shè)點(diǎn)的軌跡為曲線,直線過點(diǎn)且與交于兩點(diǎn),當(dāng)與的面積之和取得最小值時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)=.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)已知在△ABC中,A,B,C的對邊分別為a,b,c,若,,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線(為常數(shù),)經(jīng)過點(diǎn),其對稱軸在軸右側(cè),有下列結(jié)論:①拋物線經(jīng)過點(diǎn);②方程有兩個(gè)不相等的實(shí)數(shù)根;③.其中,正確結(jié)論的個(gè)數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修44:坐標(biāo)系與參數(shù)方程:在直角坐標(biāo)系xoy中,曲線的參數(shù)方程為,(為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)設(shè)P為曲線C1上的動(dòng)點(diǎn),求點(diǎn)P到C2上點(diǎn)的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表.其中《方田》章給出計(jì)算弧田面積的經(jīng)驗(yàn)公式為:.弧田(如圖1陰影部分)由圓弧和其所對弦圍成,弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.類比弧田面積公式得到球缺(如圖 2)近似體積公式:圓面積矢.球缺是指一個(gè)球被平面截下的一部分,廈門嘉庚體育館近似球缺結(jié)構(gòu)(如圖3),若該體育館占地面積約為18000,建筑容積約為340000,估計(jì)體育館建筑高度(單位:)所在區(qū)間為( )
參考數(shù)據(jù): ,,,
,.
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)滿足:①對任意實(shí)數(shù)都有;②對任意,都有恒成立;③不恒為0,且當(dāng)時(shí),.
(1)求的值;
(2)判斷函數(shù)的奇偶性,并給出你的證明.
(3)定義“若存在非零常數(shù),使得對函數(shù)定義域中的任意一個(gè),均有,則稱為以為周期的周期函數(shù)”.試證明:函數(shù)為周期函數(shù),并求出的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國南宋數(shù)學(xué)家楊輝1261年所著的《詳解九章算法》一書里出現(xiàn)了如圖所示的表,即楊輝三角,這是數(shù)學(xué)史上的一個(gè)偉大成就.在“楊輝三角”中,第行的所有數(shù)字之和為,若去除所有為1的項(xiàng),依次構(gòu)成數(shù)列,則此數(shù)列的前55項(xiàng)和為( )
A. 4072B. 2026C. 4096D. 2048
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com