已知雙曲線的方程為,雙曲線的一個(gè)焦點(diǎn)到一條漸近線的距離為c(c為雙曲線的半焦距長),則雙曲線的離心率為   
【答案】分析:根據(jù)雙曲線方程可得它的漸近線方程為bx±ay=0,焦點(diǎn)坐標(biāo)為(±c,0).利用點(diǎn)到直線的距離,結(jié)合已知條件列式,可得b=c,再用平方關(guān)系可算出a=c,最后利用雙曲線離心率的公式,可以計(jì)算出該雙曲線的離心率.
解答:解:雙曲線的漸近線方程為bx±ay=0,焦點(diǎn)坐標(biāo)為(±c,0),其中c=
∴一個(gè)焦點(diǎn)到一條漸近線的距離為d==c,即b=c,
因此,a==c,由此可得雙曲線的離心率為e==
故答案為:
點(diǎn)評:本題給出雙曲線一個(gè)焦點(diǎn)到漸近線的距離與焦距的關(guān)系,求雙曲線的離心率,著重考查了雙曲線的標(biāo)準(zhǔn)方程和簡單幾何性質(zhì)等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的方程為
x2
a2
-
y2
b2
=1(a>0,b>0)
,過左焦點(diǎn)F1作斜率為
3
3
的直線交雙曲線的右支于點(diǎn)P,且y軸平分線段F1P,則雙曲線的離心率是(  )
A、
2
B、
5
+1
C、
3
D、2+
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的方程為16x2-9y2=144.
(1)求雙曲線的焦點(diǎn)坐標(biāo)、離心率和準(zhǔn)線方程;
(2)求以雙曲線的中心為頂點(diǎn),左頂點(diǎn)為焦點(diǎn)的拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)南三模)已知雙曲線的方程為
x2
a2
-
y2
b2
=1
(a>0,b>0),雙曲線的一個(gè)焦點(diǎn)到一條漸近線的距離為
5
3
c
(c為雙曲線的半焦距長),則雙曲線的離心率為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寶山區(qū)二模)已知雙曲線的方程為
x23
-y2=1
,則此雙曲線的焦點(diǎn)到漸近線的距離為
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•昌平區(qū)二模)已知雙曲線的方程為
x2
4
-y2=1
,則其漸近線的方程為
y=±
1
2
x
y=±
1
2
x
,若拋物線y2=2px的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,則p=
2
5
2
5

查看答案和解析>>

同步練習(xí)冊答案