若函數(shù)y=cos2x+
3
sin2x+a
[0,
π
2
]
上有兩個不同的零點,則實數(shù)a的取值范圍為
 
考點:兩角和與差的正弦函數(shù),函數(shù)零點的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用,三角函數(shù)的圖像與性質(zhì)
分析:由題意可得函數(shù)g(x)=
3
sin2x+cos2x 與直線y=-a在[0,
π
2
]上兩個交點,數(shù)形結(jié)合可得a的取值范圍.
解答: 解:由題意可得函數(shù)g(x)=
3
sin2x+cos2x=2sin(2x+
π
6
) 與直線y=-a在[0,
π
2
]上兩個交點.
由于x∈[0,
π
2
],故2x+
π
6
∈[
π
6
,
6
],故g(x)∈[-1,2].
令2x+
π
6
=t,則t∈[
π
6
6
],函數(shù)y=h(t)=2sint 與直線y=m在[
π
6
6
]上有兩個交點,如圖:
要使的兩個函數(shù)圖形有兩個交點必須使得1≤-a<2,
a∈(-2,-1]
故答案為:(-2,-1].
點評:本題主要考查方程根的存在性及個數(shù)判斷,兩角和差的正弦公式,體現(xiàn)了轉(zhuǎn)化與數(shù)形結(jié)合的數(shù)學思想,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知點O(0,0),A0(0,1),An(6,7),點A1,A2,…,An-1(n∈N,n≥2)是線段A0An的n等分點,則|
OA0
+
OA1
+…+
OAn-1
+
OAn
|等于( 。
A、5nB、10n
C、5(n+1)D、10(n+1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
16x+7
4x+4
,數(shù)列{an},{bn}滿足a1>0,b1>0,an=f(an-1),bn=f(bn-1),n=2,3…
(Ⅰ)若a1=3,求a2,a3;
(Ⅱ)求a1的取值范圍,使得對任意的正整數(shù)n,都有an+1>an
(Ⅲ)若a1=3,b1=4,求證:0<bn-an
1
8n-1
,n=1,2,3…

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正數(shù)數(shù)列{an}中,a1=1,前n項和為Sn,對任意n∈N*,lgSn、lgn、lg
1
an
成等差數(shù)列.
(1)求an和Sn;
(2)設(shè)bn=
Sn
n !
,數(shù)列{bn}的前n項和為Tn,當n≥2時,證明:Sn<Tn<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,定義d(P,Q)=|x1-x2|+|y1-y2|為兩點P(x1,y1),Q(x2,y2)之間的“折線距離”,在這個定義下給出下列命題:
①到原點的“折線距離”等于2的點的軌跡是一個正方形;
②到原點的“折線距離”等于1的點的軌跡是一個圓;
③到M(-1,0),N(1,0)兩點的“折線距離”之和為4的軌跡是面積為6的六邊形;
④到M(-1,0),N(1,0)兩點的“折線距離”差的絕對值為3的點的軌跡是兩條平行直線.
其中正確的命題是
 
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平行四邊形ABCD中,
AB
=(1,0),
AC
=(2,2),則
AD
BD
等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸出的k值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系中,定義兩點P(x1,y1),Q(x2,y2)之間的“直角距離”為d(P,Q)=|x1-x2|+|y1-y2|.現(xiàn)有下列命題:
①已知P(1,3),Q(sin2α,cos2α)(α∈R),則d(P,Q)為定值;
②原點O到直線x-y+1=0上任一點P的直角距離d(O,P)的最小值為
2
2
;
③若|PQ|表示P、Q兩點間的距離,那么|PQ|≥
2
2
d(P,Q);
④設(shè)A(x,y)且x∈Z,y∈Z,若點A是在過P(1,3)與Q(5,7)的直線上,且點A到點P與Q的“直角距離”之和等于8,那么滿足條件的點A只有5個.
其中的真命題是
 
.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)橢圓
x2
16
+
y2
25
=1上的點到圓(x+6)2+y2=1上的點的距離的最大值(  )
A、11
B、9
C、
74
D、5
5

查看答案和解析>>

同步練習冊答案