【題目】已知函數(shù) f(x)=x﹣ln x﹣2.
(Ⅰ)求函數(shù) f ( x) 的最小值;
(Ⅱ)如果不等式 x ln x+(1﹣k)x+k>0(k∈Z)在區(qū)間(1,+∞)上恒成立,求k的最大值.
【答案】【解答】(I)x∈(0,+∞),f′(x)=1﹣ = ,當(dāng)x∈(0,1)時(shí),f′(x)<0,函數(shù)f(x)單調(diào)遞減;當(dāng)x∈(1,+∞)時(shí),f′(x)>0,函數(shù)f(x)單調(diào)遞增.∴當(dāng)x=1時(shí),函數(shù)f(x)取得極小值即最小值,f(1)=1﹣0﹣2=﹣1.
(II)不等式 x ln x+(1﹣k)x+k>0(k∈Z)在區(qū)間(1,+∞)上恒成立k< (x>1).
令g(x)= (x>1).g′(x)= ,由于x∈(1,+∞)時(shí),f′(x)>0,∴函數(shù)f(x)單調(diào)遞增.
∵f(1)=﹣1<0,∴函數(shù)f(x)只有一個(gè)零點(diǎn)x0,x0﹣lnx0﹣2=0.
又f(3)=1﹣ln3<0,f(4)=2﹣ln4>0,∴x0∈(3,4).
當(dāng)x∈(1,x0)時(shí),f(x0)<0,∴g′(x)<0,函數(shù)g(x)單調(diào)遞減;當(dāng)x∈(x0,+∞)時(shí),f(x0)>0,∴g′(x)>0,函數(shù)g(x)單調(diào)遞增.∴g(x)min=g(x0)= = =x0∈(3,4),
∴kmax=3.
【解析】(I)x∈(0,+∞),,利用導(dǎo)數(shù)研究其單調(diào)性即可得出當(dāng)x=1時(shí),函數(shù)f(x)取得極小值即最小值;
(II)不等式 x ln x+(1﹣k)x+k>0(k∈Z)在區(qū)間(1,+∞)上恒成立k< (x>1).令g(x)= (x>1),利用導(dǎo)數(shù)研究其單調(diào)性極值即可求出。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρ2(1+3sin2θ)=4,曲線C2: (θ為參數(shù)).
(Ⅰ)求曲線C1的直角坐標(biāo)方程和C2的普通方程;
(Ⅱ)極坐標(biāo)系中兩點(diǎn)A(ρ1 , θ0),B(ρ2 , θ0+ )都在曲線C1上,求 + 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=cos(2x+ )+2cos2x,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(2)將函數(shù)f(x)的圖象向右平移 個(gè)單位長(zhǎng)度后得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間 上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某奶茶店對(duì)某時(shí)間段的奶茶銷(xiāo)售量及其價(jià)格進(jìn)行調(diào)查,統(tǒng)計(jì)出售價(jià)元和銷(xiāo)售量杯之間的一組數(shù)據(jù)如下表所示:
價(jià)格 | 5 | 5.5 | 6.5 | 7 |
銷(xiāo)售量 | 12 | 10 | 6 | 4 |
通過(guò)分析,發(fā)現(xiàn)銷(xiāo)售量對(duì)奶茶的價(jià)格具有線性相關(guān)關(guān)系.
(1)求銷(xiāo)售量對(duì)奶茶的價(jià)格的回歸直線方程;
(2)欲使銷(xiāo)售量為13杯,則價(jià)格應(yīng)定為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)用五點(diǎn)法畫(huà)出它在一個(gè)周期內(nèi)的閉區(qū)間上的圖象;
(2)指出f(x)的周期、振幅、初相、對(duì)稱(chēng)軸;
(3)此函數(shù)圖象由y=sinx的圖象怎樣變換得到?(注:y軸上每一豎格長(zhǎng)為1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若a和b是計(jì)算機(jī)在區(qū)間(0,3)上產(chǎn)生的隨機(jī)數(shù),那么函數(shù)f(x)=lg(ax2+4x+4b) 的值域?yàn)镽的概率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)拋物線x2=4y的焦點(diǎn)F的直線l與拋物線相交于A、B兩點(diǎn).
(1)設(shè)拋物線在A、B處的切線的交點(diǎn)為M,若點(diǎn)M的橫坐標(biāo)為2,求△ABM的外接圓方程.
(2)若直線l與橢圓 + =1的交點(diǎn)為C,D,問(wèn)是否存在這樣的直線l使|AF||CF|=|BF||DF|,若存在,求出l的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2015年一交警統(tǒng)計(jì)了某路段過(guò)往車(chē)輛的車(chē)速大小與發(fā)生的交通事故次數(shù),得到如下表所示的數(shù)據(jù):
車(chē)速x(km/h) | 60 | 70 | 80 | 90 | 100 |
事故次數(shù)y | 1 | 3 | 6 | 9 | 11 |
(Ⅰ)請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;
(Ⅱ)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程=x+;
(Ⅲ)試根據(jù)(Ⅱ)求出的線性回歸方程,預(yù)測(cè)在2016年該路段路況及相關(guān)安全設(shè)施等不變的情況下,車(chē)速達(dá)到110km/h時(shí),可能發(fā)生的交通事故次數(shù).
(附:b=,=-,其中,為樣本平均值)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班級(jí)舉行一次知識(shí)競(jìng)賽活動(dòng),活動(dòng)分為初賽和決賽兩個(gè)階段、現(xiàn)將初賽答卷成績(jī)(得分均為整數(shù),滿(mǎn)分為100分)進(jìn)行統(tǒng)計(jì),制成如下頻率分布表.
分?jǐn)?shù)(分?jǐn)?shù)段) | 頻數(shù)(人數(shù)) | 頻率 |
[60,70) | ① | 0.16 |
[70,80) | 22 | ② |
[80,90) | 14 | 0.28 |
[90,100) | ③ | ④ |
合計(jì) | 50 | 1 |
(1)填充頻率分布表中的空格(在解答中直接寫(xiě)出對(duì)應(yīng)空格序號(hào)的答案);
(2)決賽規(guī)則如下:參加決賽的每位同學(xué)依次口答4道小題,答對(duì)2道題就終止答題,并獲得一等獎(jiǎng).如果前三道題都答錯(cuò),就不再答第四題.某同學(xué)進(jìn)入決賽,每道題答對(duì)的概率P的值恰好與頻率分布表中不少于80分的頻率的值相同.
①求該同學(xué)恰好答滿(mǎn)4道題而獲得一等獎(jiǎng)的概率;
②記該同學(xué)決賽中答題個(gè)數(shù)為X,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com