【題目】已知函數(shù),其中.

1)當時,求的單調(diào)區(qū)間;

2)若存在,使得不等式成立,求的取值范圍.

【答案】1)見解析;(2.

【解析】

1)求出函數(shù)的定義域和導數(shù),由得出,然后對的大小關(guān)系進行分類討論,分析導數(shù)符號,可得出函數(shù)的單調(diào)增區(qū)間和減區(qū)間;

2)由,得出,得出,構(gòu)造函數(shù),將問題轉(zhuǎn)化為,其中,然后利用導數(shù)求出函數(shù)在區(qū)間上的最小值,可得出實數(shù)的取值范圍.

1)函數(shù)的定義域為,

.

時,令,可得.

①當時,即當時,對任意的,

此時,函數(shù)的單調(diào)遞增區(qū)間為;

②當時,即當時,

,得;令,得.

此時,函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;

③當時,即當時,

,得;令,得.

此時,函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;

2)由題意,可得,可得,其中.

構(gòu)造函數(shù),則.

,令,得.

時,;當時,.

所以,函數(shù)處取得最小值,

,,則,.

因此,實數(shù)的取值范圍是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】推進垃圾分類處理,是落實綠色發(fā)展理念的必然選擇,也是打贏污染防治攻堅戰(zhàn)的重要環(huán)節(jié).為了解居民對垃圾分類的了解程度,某社區(qū)居委會隨機抽取1000名社區(qū)居民參與問卷測試,并將問卷得分繪制頻率分布表如下:

得分

男性人數(shù)

40

90

120

130

110

60

30

女性人數(shù)

20

50

80

110

100

40

20

1)從該社區(qū)隨機抽取一名居民參與問卷測試,試估計其得分不低于60分的概率;

2)將居民對垃圾分類的了解程度分為比較了解“(得分不低于60)不太了解”(得分低于60)兩類,完成列聯(lián)表,并判斷是否有95%的把握認為居民對垃圾分類的了解程度性別有關(guān)?

不太了解

比較了解

男性

女性

3)從參與問卷測試且得分不低于80分的居民中,按照性別進行分層抽樣,共抽取10人,連同名男性調(diào)查員一起組成3個環(huán)保宜傳隊.若從這中隨機抽取3人作為隊長,且男性隊長人數(shù)占的期望不小于2.的最小值.

附:

臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩名同學參加一項射擊比賽游戲,其中任何一人每射擊一次擊中目標得2分,未擊中目標得0分.若甲、乙兩人射擊的命中率分別為,且甲、乙兩人各射擊一次得分之和為2的概率為.假設(shè)甲、乙兩人射擊互不影響,則值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高一年級三個班共有學生120名,這三個班的男女生人數(shù)如下表所示,已知在全年級中隨機抽取1名學生,抽到二班女生的概率是0.2,則_________.現(xiàn)用分層抽樣的方法在全年級抽取30名學生,則應(yīng)在三班抽取的學生人數(shù)為________.

一班

二班

三班

女生人數(shù)

20

男生人數(shù)

20

20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若時,討論在區(qū)間上零點個數(shù);

2)若當時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在區(qū)間[0,1]上的函數(shù)yf(x)的圖象如圖所示.對滿足0<x1<x2<1的任意x1,x2,給出下列結(jié)論:

f(x1)-f(x2)>x1x2;

f(x1)-f(x2)<x1x2;

x2f(x1)>x1f(x2);

其中正確結(jié)論的序號是________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合,對于,,定義AB的差為AB之間的距離為

I)若,試寫出所有可能的A,B

II,證明:

i;

ii三個數(shù)中至少有一個是偶數(shù);

III)設(shè),中有m,且為奇數(shù))個元素,記P中所有兩元素間距離的平均值為,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=xlnxx+1,gx)=exaxaR

(Ⅰ)求fx)的最小值;

(Ⅱ)若gx≥1R上恒成立,求a的值;

(Ⅲ)求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三棱錐P ABC中,PA⊥平面ABC,Q是BC邊上的一個動點,且直線PQ與面ABC所成角的最大值為則該三棱錐外接球的表面積為(  )

A. B. C. D.

查看答案和解析>>

同步練習冊答案