【題目】在空間中,設(shè)m,n為兩條不同直線,α,β為兩個不同平面,則下列命題正確的是( )
A. 若m∥α且α∥β,則m∥β
B. 若α⊥β,mα,nβ,則m⊥n
C. 若m⊥α且α∥β,則m⊥β
D. 若m不垂直于α,且nα,則m必不垂直于n
科目:高中數(shù)學 來源: 題型:
【題目】已知定點M(1,0)和直線x=﹣1上的動點N(﹣1,t),線段MN的垂直平分線交直線y=t于點R,設(shè)點R的軌跡為曲線E.
(1)求曲線E的方程;
(2)直線y=kx+b(k≠0)交x軸于點C,交曲線E于不同的兩點A,B,點B關(guān)于x軸的對稱點為點P.點C關(guān)于y軸的對稱點為Q,求證:A,P,Q三點共線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某花店每天以每枝5元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝10元的價格出售,如果當天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進16枝玫瑰花,求當天的利潤y(單位:元)關(guān)于當天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)若花店一天購進16枝玫瑰花,X表示當天的利潤(單位:元),求X的分布列,數(shù)學期望及方差;
(ii)若花店計劃一天購進16枝或17枝玫瑰花,你認為應(yīng)購進16枝還是17枝?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于實數(shù)a和b,定義運算“*”:a*b= 設(shè)f(x)=(2x﹣1)*(x﹣1),且關(guān)于x的方程為f(x)=m(m∈R)恰有三個互不相等的實數(shù)根x1 , x2 , x3 , 則x1x2x3的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標中,設(shè)橢圓:的左右兩個焦點分別為,,過右焦點且與軸垂直的直線與橢圓相交,其中一個交點為.
(1)求橢圓的方程;
(2)已知,經(jīng)過點且斜率為,直線與橢圓有兩個不同的和交點,請問是否存在常數(shù),使得向量與共線?如果存在,求出的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四面體A-BCD中,AD平面BCD,BCCD,CD=2,AD=4.M是AD的中點,P是BM的中點,點Q在線段AC上,且AQ=3QC.
(I)證明:PQ//平面BCD;
(II)若異面直線PQ與CD所成的角為,二面角C-BM-D的大小為,求cos的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了變廢為寶,節(jié)約資源,新上了一個從生活垃圾中提煉生物柴油的項目.經(jīng)測算該項目月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可以近似地表示為:
,且每處理一噸生活垃圾,可得到能利用的生物柴油價值為200元,若該項目不獲利,政府將給予補貼.
(1)當時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則政府每月至少需要補貼多少元才能使該項目不虧損?
(2)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)拋物線y2=8x的焦點為F,準線為l,P為拋物線上一點,PA⊥l,A為垂足.如果直線AF的斜率為-,那么|PF|=( )
A. 4 B. 8 C. 8 D. 16
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com