Rt△ABC的兩直角邊AB=6,AC=8,在平面外有一點P和A,B,C三個頂點的距離都是13,那么點P到△ABC所在的平面的距離為

[  ]

A.13

B.12

C.10

D.9

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖1-2-17,從Rt△ABC的兩直角邊ABAC向三角形外作正方形ABFGACDE,CF、BD分別交ABACP、Q.求證:AP =AQ.

圖1-2-17

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)如圖,在Rt△ABC中,AB=BC,E、F分別是ACAB的中點,以EF為棱把它折成大小為β的二面角A-EF-B,設∠AEC=α.求證:cosα=(cosβ-1).

(2)Rt△ABC的兩直角邊AC=2,BC=3,P為斜邊AB上一點.現(xiàn)沿CP將直角三角形折成直二面角A-PC-B,當AB=時,求二面角P-AC-B的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:如圖所示,從Rt△ABC的兩直角邊AB,AC向外作正方形ABFG及ACDE,CF,BD分別交AB,AC于P,Q.求證:AP=AQ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知Rt△ABC的兩直角邊AC=2,BC=3,P為斜邊上一

點,沿CP將此直角三角形折成直二面角A—CP—B,當AB=71/2時,求二面角P—AC—B的大小。

  

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1-2-11,從Rt△ABC的兩直角邊AB、AC向三角形外作正方形ABFG及ACDE,CF、BD分別交AB、AC于P、Q點,求證:AP=AQ.

圖1-2-11

查看答案和解析>>

同步練習冊答案