已知f(3x+1)=9x2-6x+5,求函數(shù)f(x)的解析式.
考點(diǎn):函數(shù)解析式的求解及常用方法
專題:換元法
分析:先令3x+1=t求出x的值,然后代入函數(shù)表達(dá)式整理即可.
解答: 解:令3x+1=t,則x=
t-1
3
,
∴f(t)=9•(
t-1
3
)
2
-6•
t-1
3
+5,
整理得:f(t)=t2-4t+8,
∴f(x)=x2-4x+8.
點(diǎn)評:本題考察了函數(shù)解析式的求解,求函數(shù)解析式方法多種,在復(fù)習(xí)時可進(jìn)行整理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

曲線C1:y=
1
2
ex關(guān)于直線y=x對稱得曲線C2,動點(diǎn)P在C1上,動點(diǎn)Q在C2上,則|PQ|最小值為( 。
A、1-ln2
B、
2
(1-ln2)
C、1+ln2
D、
2
(1+ln2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線Γ:y2=4x,直線l經(jīng)過點(diǎn)(0,2)且其一個方向向量為
d
=(1,k).
(1)若曲線Γ的焦點(diǎn)F在直線l上,求實(shí)數(shù)k的值;
(2)當(dāng)k=-1時,直線l與曲線Γ相交于A、B兩點(diǎn),求|AB|的值;
(3)當(dāng)k(k>0)變化且直線l與曲線Γ有公共點(diǎn)時,是否存在這樣的實(shí)數(shù)a,使得點(diǎn)P(a,0)關(guān)于直線l的對稱點(diǎn)Q(x0,y0)落在曲線Γ的準(zhǔn)線上.若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線f(x)=
1
3
x3+3x+
2
3
,求與直線4x-y-2=0平行的該曲線的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c,tan
A+B
2
+tan
C
2
=4,2sinBcosC=sinA.
(1)求角A的大小;
(2)若S△ABC=
3
,求邊a的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈N,a≠b,且a2-b2=a3-b3,比較a+b,1,
4
3
大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2-2y-4=0,直線l:y=mx+1-m;
(1)求證:對任意m∈R,直線l與圓C總有兩個不同的交點(diǎn);
(2)求l與圓C交于A,B兩點(diǎn),若|AB|=
17
,求l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前三項(xiàng)為a-1,4,2a,記前n項(xiàng)和為Sn
(1)求a.
(2)設(shè)Sk=2550,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下列命題中:
①若
a
b
=
a
c
,則
b
=
c
;          
②x=
π
8
是函數(shù)y=sin(2x+
4
)的一條對稱軸方程;
③已知△ABC中,a=4
3
,b=4,∠B=30°,則∠A等于60°;
④存在實(shí)數(shù)x,使得sinx+cosx=
π
2
成立;
⑤已知函數(shù)f(x)=
sinπx,x<0
x
, x>0
,則方程f(x)=x在[-2,2]上的實(shí)數(shù)解的個數(shù)為3.
其中正確的命題序號為
 

查看答案和解析>>

同步練習(xí)冊答案