精英家教網 > 高中數學 > 題目詳情
在△ABC中,角A,B,C所對應的邊分別為a,b,c,tan
A+B
2
+tan
C
2
=4,2sinBcosC=sinA.
(1)求角A的大小;
(2)若S△ABC=
3
,求邊a的大小.
考點:正弦定理,三角函數中的恒等變換應用
專題:解三角形
分析:(1)把tan
A+B
2
+tan
C
2
=4轉化成正弦和余弦的關系式,求得sinC的值,進而求得C,整理2sinBcosC=sinA可求得sin(B-C)=0,判斷出B=C,進而求得A.
(2)利用正弦定理求得b的表達式,代入三角形面積公式求得答案.
解答: 解:∵tan
A+B
2
+tan
C
2
=4,
cos
C
2
sin
C
2
+
sin
C
2
cos
C
2
=4,
1
sin
C
2
cos
C
2
=4,
∴sinC=
1
2
,
∵C∈(0,π),
∴C=
π
6
6

∵2sinBcosC=sinA
∴2sinBcosC=sin(B+C)=sinBcosC+cosBsinC,
∴sinBcosC-cosBsinC=0,即sin(B-C)=0,
∴C=B=
π
6

∵A=π-C-B=
3
,.
(2)∵
a
sinA
=
b
sinB

∴b=
a
sinA
•sinB=
3
3
a,
∵C=B
∴c=b
∴S△ABC=
1
2
bcsinA=
1
2
×
3
3
3
3
3
2
=
3
12
a2
=
3

∴a=2
3
點評:本題主要考查了正弦定理的運用,三角形恒等變換的應用.要充分利用好已知條件,必須是先化簡再求值.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知向量
a
=(2,-3,5)與向量
b
=(3,λ,
15
2
)平行,則λ=( 。
A、
2
3
B、
9
2
C、-
9
2
D、-
2
3

查看答案和解析>>

科目:高中數學 來源: 題型:

若P是拋物線x2=4y上的一個動點,則點P到直線l1:y=-1,l2:3x+4y+12=0的距離之和的最小值為( 。
A、3
B、4
C、
16
5
D、
19
5

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,△ABC是邊長為1的正三角形,M,N分別是邊AB,AC上的點,線段MN過△ABC的重心G,設∠MGA=α,α∈[
π
3
3
].
(1)當α=105°時,求MG的長;
(2)分別記△AGM,△AGN的面積為S1,S2,試將S1,S2表示為α的函數;
(3)求y=
1
S12
+
1
S22
的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定點F(1,0),動點P(異于原點)在y軸上運動,連結PF,過點P作PM交x軸于點M,并延長MP與N,且
PM
PF
=0,|
PN
|=|
PM
|.
(1)求動點N的軌跡C的方程;
(2)若A(a,0),a∈R,求使|
AN
|最小的點N的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(3x+1)=9x2-6x+5,求函數f(x)的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:

若sin(π+α)+cos(
π
2
+α)=-m,求cos(
2
-α)+2sin(2π+α)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

某市2013年4月1日-4月30日對空氣污染指數的監(jiān)測數據如下(主要污染物為可吸入顆粒物):
61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45,
(Ⅰ)完成頻率分布表;
(Ⅱ)作出頻率分布直方圖.

查看答案和解析>>

科目:高中數學 來源: 題型:

過拋物線y2=4x的焦點F作直線交該拋物線于兩點A,B,若|AF|=3,則A點的橫坐標為
 

查看答案和解析>>

同步練習冊答案