【題目】已知函數(shù)f(x)=2cos2x+2sinxcosx+a,且當(dāng)x∈[0,]時,f(x)的最小值為2.
(1)求a的值,并求f(x)的單調(diào)遞增區(qū)間;
(2)先將函數(shù)y=f(x)的圖象上的點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)縮小到原來的,再將所得圖象向右平移個單位,得到函數(shù)y=g(x)的圖象,求方程g(x)=4在區(qū)間[0,]上所有根之和.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭記錄了未使用節(jié)水龍頭50天的日用水量數(shù)據(jù)(單位:m3)和使用了節(jié)水龍頭50天的日用水量數(shù)據(jù),得到頻數(shù)分布表如下:
未使用節(jié)水龍頭50天的日用水量頻數(shù)分布表
日用 水量 | |||||||
頻數(shù) | 1 | 3 | 2 | 4 | 9 | 26 | 5 |
使用了節(jié)水龍頭50天的日用水量頻數(shù)分布表
日用 水量 | ||||||
頻數(shù) | 1 | 5 | 13 | 10 | 16 | 5 |
(1)在答題卡上作出使用了節(jié)水龍頭50天的日用水量數(shù)據(jù)的頻率分布直方圖:
(2)估計(jì)該家庭使用節(jié)水龍頭后,日用水量小于0.35 m3的概率;
(3)估計(jì)該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按365天計(jì)算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一輛汽車前往目的地需要經(jīng)過個有紅綠燈的路口.汽車在每個路口遇到綠燈的概率為(可以正常通過),遇到紅燈的概率為(必須停車).假設(shè)汽車只有遇到紅燈或到達(dá)目的地才停止前進(jìn),用隨機(jī)變量表示前往目的地途中遇到紅燈數(shù)和綠燈數(shù)之差的絕對值.
(1)求汽車在第個路口首次停車的概率;
(2)求的概率分布和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).M是曲線上的動點(diǎn),將線段OM繞O點(diǎn)順時針旋轉(zhuǎn)得到線段ON,設(shè)點(diǎn)N的軌跡為曲線.以坐標(biāo)原點(diǎn)O為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)在(1)的條件下,若射線與曲線分別交于A, B兩點(diǎn)(除極點(diǎn)外),且有定點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求曲線y=f(x)在點(diǎn)處的切線與坐標(biāo)軸圍成的三角形的面積;
(2)求過點(diǎn)作曲線y=f(x)的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),x∈(b﹣3,2b)是奇函數(shù),
(1)求a,b的值;
(2)若f(x)是區(qū)間(b﹣3,2b)上的減函數(shù)且f(m﹣1)+f(2m+1)>0,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.
(1)若BA,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)x∈Z時,求A的非空真子集個數(shù);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩圓C1:x2+y2-2x-6y-1=0和C2:x2+y2-10x-12y+45=0.
(1)求證:圓C1和圓C2相交;
(2)求圓C1和圓C2的公共弦所在直線的方程和公共弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六組[90,100),[100,110),…,[140,150]后得到如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:
(1)求分?jǐn)?shù)在[120,130)內(nèi)的頻率;
(2)估計(jì)本次考試的中位數(shù);
(3)用分層抽樣的方法在分?jǐn)?shù)段為[110,130)的學(xué)生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2人,求至多有1人在分?jǐn)?shù)段[120,130)內(nèi)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com