如圖所示,在平面直角坐標(biāo)系xOy中,一單位圓的圓心的初始位置在(0,1),此時(shí)圓上二點(diǎn)P的位置在(0,0),圓在x軸上沿正向滾動,則當(dāng)圓滾動到圓心位于(2,1)時(shí)線段OP與初始單位圓的交點(diǎn)為M,則|OM|=
2-2cos2
6-4sin2-2cos2
2-2cos2
6-4sin2-2cos2
分析:求單位圓中的弦長,關(guān)鍵是求出α的三角函數(shù)值,確定P的坐標(biāo)即可.
解答:解:設(shè)∠xOP=α,N(0,1),連接MN,則∠ONM=2α
∵圓滾動了2單位個(gè)弧長,點(diǎn)P旋轉(zhuǎn)了2弧度,
∴P(2-sin2,1-cos2),
∴|OP|=
(2-sin2)2+(1-cos2)2
=
6-4sin2-2cos2

∴sinα=
1-cos2
6-4sin2-2cos2

在△ONM中,|OM|=2|MN|sinα=2sinα=
2-2cos2
6-4sin2-2cos2

故答案為:
2-2cos2
6-4sin2-2cos2
點(diǎn)評:本題考查三角函數(shù)的定義,考查學(xué)生的計(jì)算能力,確定P的坐標(biāo)是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在平面直角坐標(biāo)系xOy中,角α的終邊與單位圓交于點(diǎn)A,點(diǎn)A的縱坐標(biāo)為
45
,則cosα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形ABCD是平行四邊形,已知A(-1,-2)、B(2,3)、D(-2,-1).
(1)分別求兩條對角線AC,BD的長度;
(2)若向量
AB
-t
OD
OD
垂直,求實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浦東新區(qū)一模)如圖所示,在平面直角坐標(biāo)系xOy上放置一個(gè)邊長為1的正方形PABC,此正方形PABC沿x軸滾動(向左或向右均可),滾動開始時(shí),點(diǎn)P位于原點(diǎn)處,設(shè)頂點(diǎn)P(x,y)的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系是y=f(x),x∈R,該函數(shù)相鄰兩個(gè)零點(diǎn)之間的距離為m.
(1)寫出m的值并求出當(dāng)0≤x≤m時(shí),點(diǎn)P運(yùn)動路徑的長度l;
(2)寫出函數(shù)f(x),x∈[4k-2,4k+2],k∈Z的表達(dá)式;研究該函數(shù)的性質(zhì)并填寫下面表格:
函數(shù)性質(zhì) 結(jié)  論
奇偶性
偶函數(shù)
偶函數(shù)
單調(diào)性 遞增區(qū)間
[4k,4k+2],k∈z
[4k,4k+2],k∈z
遞減區(qū)間
[4k-2,4k],k∈z
[4k-2,4k],k∈z
零點(diǎn)
x=4k,k∈z
x=4k,k∈z
(3)試討論方程f(x)=a|x|在區(qū)間[-8,8]上根的個(gè)數(shù)及相應(yīng)實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在平面直角坐標(biāo)系xOy中,角α的終邊與單位圓交于點(diǎn)A,點(diǎn)A的縱坐標(biāo)為
4
5
,cosα=( 。

查看答案和解析>>

同步練習(xí)冊答案