設(shè)F1,F(xiàn)2是雙曲線(xiàn)x2-=1的兩個(gè)焦點(diǎn),P是雙曲線(xiàn)上的一點(diǎn),且3PF1=4PF2,則△PF1F2的面積等于________.

 

24

【解析】由P是雙曲線(xiàn)上的一點(diǎn)和3PF1=4PF2可知,PF1-PF2=2,解得PF1=8,PF2=6.又F1F2=2c=10,所以△PF1F2為直角三角形,所以△PF1F2的面積S=×6×8=24.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第十一章第4課時(shí)練習(xí)卷(解析版) 題型:填空題

從個(gè)位數(shù)與十位數(shù)之和為奇數(shù)的兩位數(shù)中任取一個(gè),其個(gè)位數(shù)為0的概率是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第9課時(shí)練習(xí)卷(解析版) 題型:填空題

已知拋物線(xiàn)關(guān)于x軸對(duì)稱(chēng),它的頂點(diǎn)在坐標(biāo)原點(diǎn)O,并且經(jīng)過(guò)點(diǎn)M(2,y0).若點(diǎn)M到該拋物線(xiàn)焦點(diǎn)的距離為3,則OM=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第8課時(shí)練習(xí)卷(解析版) 題型:填空題

已知橢圓=1(a>b>c>0,a2=b2+c2)的左、右焦點(diǎn)分別為F1,F(xiàn)2,若以F2為圓心,b-c為半徑作圓F2,過(guò)橢圓上一點(diǎn)P作此圓的切線(xiàn),切點(diǎn)為T(mén),且PT的最小值為(a-c),則橢圓的離心率e的取值范圍是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第8課時(shí)練習(xí)卷(解析版) 題型:解答題

已知雙曲線(xiàn)過(guò)點(diǎn)(3,-2),且與橢圓4x2+9y2=36有相同的焦點(diǎn).

(1)求雙曲線(xiàn)的標(biāo)準(zhǔn)方程;

(2)求以雙曲線(xiàn)的右準(zhǔn)線(xiàn)為準(zhǔn)線(xiàn)的拋物線(xiàn)的標(biāo)準(zhǔn)方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第7課時(shí)練習(xí)卷(解析版) 題型:解答題

如圖,已知△OFQ的面積為S,且·=1.設(shè)||=c(c≥2),S=c.若以O(shè)為中心,F(xiàn)為一個(gè)焦點(diǎn)的橢圓經(jīng)過(guò)點(diǎn)Q,當(dāng)||取最小值時(shí),求橢圓的方程.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第7課時(shí)練習(xí)卷(解析版) 題型:解答題

如圖,已知橢圓=1(a>b>0)的離心率為,且過(guò)點(diǎn)A(0,1).

(1)求橢圓的方程;

(2)過(guò)點(diǎn)A作兩條互相垂直的直線(xiàn)分別交橢圓于點(diǎn)M、N,求證:直線(xiàn)MN恒過(guò)定點(diǎn)P.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第6課時(shí)練習(xí)卷(解析版) 題型:填空題

已知F1、F2分別是橢圓=1(a>b>0)的左、右焦點(diǎn),A、B分別是此橢圓的右頂點(diǎn)和上頂點(diǎn),P是橢圓上一點(diǎn),O是坐標(biāo)原點(diǎn),OP∥AB,PF1⊥x軸,F(xiàn)1A=,則此橢圓的方程是________________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第4課時(shí)練習(xí)卷(解析版) 題型:解答題

已知圓滿(mǎn)足:①截y軸所得弦長(zhǎng)為2;②被x軸分成兩段圓弧,其弧長(zhǎng)的比為3∶1;③圓心到直線(xiàn)l:x-2y=0的距離為,求該圓的方程.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案