若函數(shù)f(x)=,若f(a)<f(-a),則實(shí)數(shù)a的取值范圍是( )
A.(-1,0)∪(0,1)
B.(-∞,-1)∪(0,1)
C.(-1,0)∪(1,+∞)
D.(-∞,-1)∪(1,+∞)
【答案】分析:當(dāng)a>0時(shí),-a<0,f(a)=log2a,f(-a)=,解不等式f(a)<f(-a)求得實(shí)數(shù)a的取值范圍;
當(dāng)a<0 時(shí),-a>0,f(a)=,f(-a)=log2(-a),由f(a)<f(-a)求得實(shí)數(shù)a的取值范圍;
再把a(bǔ)的取值范圍取并集,即得所求.
解答:解:由函數(shù)f(x)的解析式可得,函數(shù)f(x)的定義域?yàn)椋?∞,0)∪(0,+∞).
當(dāng)a>0時(shí),-a<0,f(a)=log2a,f(-a)=,
由f(a)<f(-a)得  log2a<=,∴a<,解得 1>a>0.
當(dāng)a<0 時(shí),-a>0,f(-a)=,f(a)=log2(-a),
由f(a)<f(-a)得 <log2(-a),即 <log2(-a),∴<-a,解得 a<-1.
綜上得:0<a<1,或a<-1,
故選B.
點(diǎn)評(píng):本題主要考查對(duì)數(shù)函數(shù)的單調(diào)性和特殊點(diǎn),分段函數(shù)的解析式的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)滿足條件:當(dāng)x1,x2∈[-1,1]時(shí),有|f(x1)-f(x2)|≤3|x1-x2|成立,則稱f(x)∈Ω.對(duì)于函數(shù)g(x)=x3,h(x)=
1
x+2
,有( 。
A、g(x)∈Ω且h(x)∉Ω
B、g(x)∉Ω且h(x)∈Ω
C、g(x)∈Ω且h(x)∈Ω
D、g(x)∉Ω且h(x)∉Ω

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義在區(qū)間D上的函數(shù)f(x)和g(x),如果對(duì)于任意x∈D,都有|f(x)-g(x)|≤1成立,那么稱函數(shù)f(x)在區(qū)間D上可被函數(shù)g(x)替代.
(1)若f(x)=
x
2
-
1
x
,g(x)=lnx
,試判斷在區(qū)間[[1,e]]上f(x)能否被g(x)替代?
(2)記f(x)=x,g(x)=lnx,證明f(x)在(
1
m
,m)(m>1)
上不能被g(x)替代;
(3)設(shè)f(x)=alnx-ax,g(x)=-
1
2
x2+x
,若f(x)在區(qū)間[1,e]上能被g(x)替代,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)同時(shí)滿足下列兩個(gè)性質(zhì),則稱其為“規(guī)則函數(shù)”
①函數(shù)f(x)在其定義域上是單調(diào)函數(shù);
②在函數(shù)f(x)的定義域內(nèi)存在閉區(qū)間[a,b]使得f(x)在[a,b]上的最小值是
a
2
,且最大值是
b
2

請(qǐng)解答以下問(wèn)題:
(Ⅰ) 判斷函數(shù)f(x)=x2-2x,(x∈(0,+∞))是否為“規(guī)則函數(shù)”?并說(shuō)明理由;
(Ⅱ)判斷函數(shù)g(x)=-x3是否為“規(guī)則函數(shù)”?并說(shuō)明理由.若是,請(qǐng)找出滿足②的閉區(qū)間[a,b];
(Ⅲ)若函數(shù)h(x)=
x-1
+t
是“規(guī)則函數(shù)”,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案