【題目】2015隨州期末)甲命題:若隨機(jī)變量ξN3,σ2),若Pξ≤2=0.3,則Pξ≤4=0.7.乙命題:隨機(jī)變量η﹣Bn,p),且Eη=300,Dη=200,則P=,則正確的是( )

A. 甲正確乙錯(cuò)誤 B. 甲錯(cuò)誤乙正確

C. 甲錯(cuò)誤乙也錯(cuò)誤 D. 甲正確乙也正確

【答案】D

【解析】

試題分析:隨機(jī)變量X服從正態(tài)分布N3σ2),得到曲線關(guān)于x=3對(duì)稱(chēng),根據(jù)曲線的對(duì)稱(chēng)性得到結(jié)論;隨機(jī)變量η﹣Bn,p),且Eη=300,Dη=200,則,求出p,即可得出結(jié)論.

解:隨機(jī)變量X服從正態(tài)分布N3σ2),

曲線關(guān)于x=3對(duì)稱(chēng),

∴Pξ≤4=1﹣Pξ≤2=0.7,甲命題正確;

隨機(jī)變量η﹣Bnp),且Eη=300,Dη=200,則,∴p=,正確,

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè).

(1)的單調(diào)區(qū)間;

(2)求的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥底面ABC,AB=AC=2AA1 , ∠BAC=120°,D,D1分別是線段BC,B1C1的中點(diǎn),P是線段AD的中點(diǎn).

(1)在平面ABC內(nèi),試做出過(guò)點(diǎn)P與平面A1BC平行的直線l,說(shuō)明理由,并證明直線l⊥平面ADD1A1;
(2)設(shè)(1)中的直線l交AB于點(diǎn)M,交AC于點(diǎn)N,求二面角A﹣A1M﹣N的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l1:x-2y+3=0與直線l2:2x+3y-8=0的交點(diǎn)為M,

(1)求過(guò)點(diǎn)M且到點(diǎn)P(0,4)的距離為2的直線l的方程;

(2)求過(guò)點(diǎn)M且與直線l3:x+3y+1=0平行的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)非零常數(shù)d是等差數(shù)列x1 , x2 , …,x19的公差,隨機(jī)變量ξ等可能地取值x1 , x2 , …,x19 , 則方差Dξ=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】把數(shù)列的各項(xiàng)按順序排列成如下的三角形狀,記表示第行的第個(gè)數(shù),例如,若,則=( )

A. 6 B. 7 C. 8 D. 15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知雙曲線C1 ,曲線C2:|y|=|x|+1,P是平面內(nèi)一點(diǎn),若存在過(guò)點(diǎn)P的直線與C1 , C2都有公共點(diǎn),則稱(chēng)P為“C1﹣C2型點(diǎn)”

(1)在正確證明C1的左焦點(diǎn)是“C1﹣C2型點(diǎn)“時(shí),要使用一條過(guò)該焦點(diǎn)的直線,試寫(xiě)出一條這樣的直線的方程(不要求驗(yàn)證);
(2)設(shè)直線y=kx與C2有公共點(diǎn),求證|k|>1,進(jìn)而證明原點(diǎn)不是“C1﹣C2型點(diǎn)”;
(3)求證:圓x2+y2= 內(nèi)的點(diǎn)都不是“C1﹣C2型點(diǎn)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)口袋有個(gè)白球,個(gè)黑球,這些球除顏色外全部相同,現(xiàn)將口袋中的球隨機(jī)逐個(gè)取出,并依次放入編號(hào)為,,,的抽屜內(nèi).

(1)求編號(hào)為的抽屜內(nèi)放黑球的概率;

(2)口袋中的球放入抽屜后,隨機(jī)取出兩個(gè)抽屜中的球,求取出的兩個(gè)球是一黑一白的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)邊分別為a,b,c,且a+c=6,b=2,
(1)求a,c的值;
(2)求sin(A﹣B)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案