【題目】如圖所示,在幾何體中,四邊形是菱形,平面,,且,.
(1)證明:平面平面;
(2)若二面角是直二面角,求異面直線與所成角的余弦值.
【答案】(1)見解析;(2)
【解析】
(1)通過證明,,證明平面,再得到平面⊥平面.
(2)以為軸和軸,建立空間直角坐標系,設,求出平面的法向量和平面的法向量,利用二面角是直二面角求出,得到與的坐標,利用向量夾角公式,得到答案.
(1)證明:四邊形是菱形,
平面,
而
平面,平面,
平面⊥平面
(2)設與的交點為,由(1)得,
如圖:分別以為軸和軸,過點作垂直于平面的直線為軸,建立如圖所示的空間直角坐標系
.設,
則,
,,.
設是平面的法向量,則,
即,
令,平面AEF的一個法向量為
同理設,是平面的法向量,則
得平面的一個法向量為,
二面角是直二面角,
,.
,
設異面直線與所成角為
故所求異面直線與所成角為的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(),其中為自然對數(shù)的底數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)已知, 為整數(shù),若對任意,都有恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求的最小正周期;
(2)求的值域;
(3)求的遞增區(qū)間
(4)求的對稱軸;
(5)求的對稱中心;
(6)的三邊a,b,c滿足,且b所對的角為x,求x的取值范圍及函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每天從該生產(chǎn)線上隨機抽取16個零件,并測量其尺寸(單位:cm).根據(jù)長期生產(chǎn)經(jīng)驗,可以認為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布N(μ,σ2).
(1)假設生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個零件中其尺寸在(μ-3σ,μ+3σ)之外的零件數(shù),求P(X≥1)及X的數(shù)學期望;
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(μ-3σ,μ+3σ)之外的零件,就認為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當天的生產(chǎn)過程進行檢查.
①試說明上述監(jiān)控生產(chǎn)過程方法的合理性;
②下面是檢驗員在一天內(nèi)抽取的16個零件的尺寸:
經(jīng)計算得==9.97,s==≈0.212,其中xi為抽取的第i個零件的尺寸,i=1,2,…,16.
用樣本平均數(shù)作為μ的估計值,用樣本標準差s作為σ的估計值,,利用估計值判斷是否需對當天的生產(chǎn)過程進行檢查?剔除(﹣3+3)之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計μ和σ(精確到0.01).
附:若隨機變量Z服從正態(tài)分布N(μ,σ2),則P(μ-3σ<Z<μ+3σ)=0.997 4.0.997 416≈0.959 2,≈0.09.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設動點到定點的距離比它到軸的距離大,記點的軌跡為曲線.
(1)求點的軌跡方程;
(2)若圓心在曲線上的動圓過點,試證明圓與軸必相交,且截軸所得的弦長為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程(為參數(shù)),以坐標原點為極點, 軸正半軸為極軸建立極坐標系,曲線的極坐標方程為: .
(1)把直線的參數(shù)方程化為極坐標方程,把曲線的極坐標方程化為普通方程;
(2)求直線與曲線交點的極坐標(≥0,0≤).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來,隨著“一帶一路”倡議的推進,中國與沿線國家旅游合作越來越密切,中國到“一帶一路”沿線國家的游客人也越來越多,如圖是2013-2018年中國到“一帶一路”沿線國家的游客人次情況,則下列說法正確的是( )
①2013-2018年中國到“一帶一路”沿線國家的游客人次逐年增加
②2013-2018年這6年中,2016年中國到“一帶一路”沿線國家的游客人次增幅最小
③2016-2018年這3年中,中國到“一帶一路”沿線國家的游客人次每年的增幅基本持平
A.①③B.②③C.①②D.①②③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓: 的離心率為,拋物線:截軸所得的線段長等于.與軸的交點為,過點作直線與相交于點直線分別與相交于.
(1)求證:;
(2)設,的面積分別為,若 ,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com