已知分別是雙曲線的兩個焦點,是以(為坐標原點)為圓心,為半徑的圓與該雙曲線左支的兩個交點,且是等邊三角形,則雙曲線的離心率為(     )
A.B.C.D.
D

試題分析:如圖,

設F1F2=2c,∵△F2AB是等邊三角形,∴∠AF2F1=30°,∴AF1=c,AF2=C,∴a=,e=,故選D
點評:求解圓錐曲線的離心率的關鍵是利用代數(shù)運算或幾何特征找的關于a、b、c的關系式。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線的兩條漸近線的夾角為,則雙曲線的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如右圖,拋物線C:(p>0)的焦點為F,A為C上的點,以F為圓心,為半徑的圓與線段AF的交點為B,∠AFx=60°,A在y軸上的射影為N,則∠=      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知F1、F2為雙曲線C:x²-y²=2的左、右焦點,點P在C上,|PF1|=2|PF2|,則cos∠F1PF2=(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

和圓的極坐標方程分別為,則經(jīng)過兩圓圓心的直線的直角坐標方程為_________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設圓的極坐標方程為,以極點為直角坐標系的原點,極軸為軸正半軸,兩坐標系長度單位一致,建立平面直角坐標系.過圓上的一點作平行于軸的直線,設軸交于點,向量
(Ⅰ)求動點的軌跡方程;
(Ⅱ)設點 ,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若直線的極坐標方程為,曲線:上的點到直線的距離為,則的最大值為_________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線與拋物線所圍成的圖形面積是(     )
A.20B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

焦點在軸上,漸近線方程為的雙曲線的離心率為_______.

查看答案和解析>>

同步練習冊答案