(2012•閘北區(qū)一模)如右圖,一塊曲線部分是拋物線形的鋼板,其底邊長(zhǎng)為2,高為1,將此鋼板切割成等腰梯形的形狀,記CD=2x,梯形面積為S.則S關(guān)于x的函數(shù)解析式及定義域?yàn)?!--BA-->
S=(x+1)(1-x2),x∈(0,1)
S=(x+1)(1-x2),x∈(0,1)
分析:建立坐標(biāo)系,求出拋物線的方程,進(jìn)而可求梯形的高,從而可求梯形的面積.
解答:解:建立如圖所示的直角坐標(biāo)系,設(shè)拋物線方程為x2=-2py(p>0),則B(1,-1)
代入拋物線方程可得2p=1,∴拋物線方程為x2=-y
∵CD=2x,∴D(x,-x2
∴梯形的高為1-x2,梯形的面積為S=(x+1)(1-x2),x∈(0,1)
故答案為:S=(x+1)(1-x2),x∈(0,1)
點(diǎn)評(píng):本題考查函數(shù)模型的構(gòu)建,考查拋物線方程,確定梯形的高是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•閘北區(qū)一模)曲線y=-
4-x2
(x≤0)
的長(zhǎng)度為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•閘北區(qū)一模)已知函數(shù)f(x)=2|x-2|+ax(x∈R)有最小值.
(1)求實(shí)常數(shù)a的取值范圍;
(2)設(shè)g(x)為定義在R上的奇函數(shù),且當(dāng)x<0時(shí),g(x)=f(x),求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•閘北區(qū)一模)若函數(shù)f(x)的圖象與對(duì)數(shù)函數(shù)y=log4x的圖象關(guān)于直線x+y=0對(duì)稱,則f(x)的解析式為f(x)=
y=-4-x
y=-4-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•閘北區(qū)一模)方程1+x-2=0的全體實(shí)數(shù)解組成的集合為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•閘北區(qū)一模)不等式2>
1
x
的解集為
{x|x<0,或x>
1
2
}
{x|x<0,或x>
1
2
}

查看答案和解析>>

同步練習(xí)冊(cè)答案