【題目】為了使房?jī)r(jià)回歸到收入可支撐的水平,讓全體人民住有所居,近年來(lái)全國(guó)各一、二線(xiàn)城市打擊投機(jī)購(gòu)房,陸續(xù)出臺(tái)了住房限購(gòu)令.某市一小區(qū)為了進(jìn)一步了解已購(gòu)房民眾對(duì)市政府岀臺(tái)樓市限購(gòu)令的認(rèn)同情況,隨機(jī)抽取了本小區(qū)50戶(hù)住戶(hù)進(jìn)行調(diào)查,各戶(hù)人平均月收入(單位:千元)的戶(hù)數(shù)頻率分布直方圖如圖,其中贊成限購(gòu)的戶(hù)數(shù)如下表:
人平均月收入 | ||||||
贊成戶(hù)數(shù) | 4 | 9 | 12 | 6 | 3 | 1 |
(1)若從人平均月收入在的住戶(hù)中再隨機(jī)抽取兩戶(hù),求所抽取的兩戶(hù)至少有一戶(hù)贊成樓市限購(gòu)令的概率;
(2)若將小區(qū)人平均月收入不低于7千元的住戶(hù)稱(chēng)為“高收入戶(hù)”,人平均月收入低于7千元的住戶(hù)稱(chēng)為“非高收入戶(hù)”根據(jù)已知條件完成如圖所給的列聯(lián)表,并說(shuō)明能否有的把握認(rèn)為“收入的高低”與“贊成樓市限購(gòu)令”有關(guān).
非高收入戶(hù) | 高收入戶(hù) | 總計(jì) | |
贊成 | |||
不贊成 | |||
總計(jì) |
附:臨界值表
0.1 | 0.05 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.63.5 | 10.828 |
參考公式:,.
【答案】(1)(2)見(jiàn)解析,有的把握認(rèn)為“收入的高低”與“贊成樓市限購(gòu)令”有關(guān).
【解析】
(1)由頻率分布直方圖知,月收入在的住戶(hù)共有6戶(hù),設(shè)其編號(hào),記贊成樓市限購(gòu)令,設(shè)事件為“所抽取的兩戶(hù)中至少有一戶(hù)贊成樓市限購(gòu)令”,利用列舉法求出總的基本事件個(gè)數(shù)和事件包含的基本事件個(gè)數(shù),然后代入古典概型概率計(jì)算公式求解即可;
(2)根據(jù)題中的數(shù)據(jù)完成列聯(lián)表,把列聯(lián)表中的數(shù)據(jù)代入題中的公式中進(jìn)行計(jì)算求解,然后與臨界值進(jìn)行比較即可.
(1)由直方圖知,月收入在的住戶(hù)共有戶(hù),
設(shè)其編號(hào)為,記為贊成樓市限購(gòu)令的住戶(hù),
從這6戶(hù)中隨機(jī)抽取2戶(hù),則所有的可能結(jié)果為,,,,,,,,,,,,,,共15種,
設(shè)事件為“所抽取的兩戶(hù)中至少有一戶(hù)贊成樓市限購(gòu)令”,則事件包含的基本事件為,,,,,,,,,,,共12個(gè)基本事件,
由古典概型概率計(jì)算公式可得,.
(2)依題意可得,列聯(lián)表如下:
非高收入戶(hù) | 高收入戶(hù) | 總計(jì) | |
贊成 | 25 | 10 | 35 |
不贊成 | 5 | 10 | 15 |
總計(jì) | 30 | 20 | 50 |
根據(jù)列聯(lián)表中的數(shù)據(jù)可得,的觀測(cè)值,
所以有的把握認(rèn)為“收入的高低”與“贊成樓市限購(gòu)令”有關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)在第一象限,以為直徑的圓與軸相切,動(dòng)點(diǎn)的軌跡為曲線(xiàn).
(1)求曲線(xiàn)的方程;
(2)若曲線(xiàn)在點(diǎn)處的切線(xiàn)的斜率為,直線(xiàn)的斜率為,求滿(mǎn)足的點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四種說(shuō)法:
①命題“,”的否定是“,”;
②若不等式的解集為,則不等式的解集為;
③對(duì)于,恒成立,則實(shí)數(shù)a的取值范圍是;
④已知p:,q:(),若p是q的充分不必要條件,則實(shí)數(shù)a的取值范圍是
正確的有________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為了解所經(jīng)銷(xiāo)商品的使用情況,隨機(jī)問(wèn)卷50名使用者,然后根據(jù)這50名的問(wèn)卷評(píng)分?jǐn)?shù)據(jù),統(tǒng)計(jì)得到如圖所示的頻率布直方圖,其統(tǒng)計(jì)數(shù)據(jù)分組區(qū)間為[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求頻率分布直方圖中a的值并估計(jì)這50名使用者問(wèn)卷評(píng)分?jǐn)?shù)據(jù)的中位數(shù);
(2)從評(píng)分在[40,60)的問(wèn)卷者中,隨機(jī)抽取2人,求此2人評(píng)分都在[50,60)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】比較甲、乙兩名學(xué)生的數(shù)學(xué)學(xué)科素養(yǎng)的各項(xiàng)能力指標(biāo)值(滿(mǎn)分為5分,分值高者為優(yōu)),繪制了如圖1所示的六維能力雷達(dá)圖,例如圖中甲的數(shù)學(xué)抽象指標(biāo)值為4,乙的數(shù)學(xué)抽象指標(biāo)值為5,則下面敘述正確的是( )
A. 乙的邏輯推理能力優(yōu)于甲的邏輯推理能力
B. 甲的數(shù)學(xué)建模能力指標(biāo)值優(yōu)于乙的直觀想象能力指標(biāo)值
C. 乙的六維能力指標(biāo)值整體水平優(yōu)于甲的六維能力指標(biāo)值整體水平
D. 甲的數(shù)學(xué)運(yùn)算能力指標(biāo)值優(yōu)于甲的直觀想象能力指標(biāo)值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間和的極值;
(2)對(duì)于任意的,,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知長(zhǎng)度為的線(xiàn)段的兩個(gè)端點(diǎn)分別在軸和軸上運(yùn)動(dòng),動(dòng)點(diǎn)滿(mǎn)足,設(shè)動(dòng)點(diǎn)的軌跡為曲線(xiàn).
(1)求曲線(xiàn)的方程;
(2)過(guò)點(diǎn),且斜率不為零的直線(xiàn)與曲線(xiàn)交于兩點(diǎn),在軸上是否存在定點(diǎn),使得直線(xiàn)與的斜率之積為常數(shù)?若存在,求出定點(diǎn)的坐標(biāo)以及此常數(shù);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】綠色已成為當(dāng)今世界主題,綠色動(dòng)力已成為時(shí)代的驅(qū)動(dòng)力,綠色能源是未來(lái)新能源行業(yè)的主導(dǎo).某汽車(chē)公司順應(yīng)時(shí)代潮流,最新研發(fā)了一款新能源汽車(chē),并在出廠前對(duì)100輛汽車(chē)進(jìn)行了單次最大續(xù)航里程(理論上是指新能源汽車(chē)所裝載的燃料或電池所能夠提供給車(chē)行駛的最遠(yuǎn)里程)的測(cè)試.現(xiàn)對(duì)測(cè)試數(shù)據(jù)進(jìn)行分析,得到如圖所示的頻率分布直方圖.
(1)估計(jì)這100輛汽車(chē)的單次最大續(xù)航里程的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)根據(jù)大量的汽車(chē)測(cè)試數(shù)據(jù),可以認(rèn)為這款汽車(chē)的單次最大續(xù)航里程近似地服從正態(tài)分布,經(jīng)計(jì)算第(1)問(wèn)中樣本標(biāo)準(zhǔn)差的近似值為50.用樣本平均數(shù)作為的近似值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值;
(ⅰ)現(xiàn)從該汽車(chē)公司最新研發(fā)的新能源汽車(chē)中任取一輛汽車(chē),求它的單次最大續(xù)航里程恰好在200千米到350千米之間的概率;
(ⅱ)從該汽車(chē)公司最新研發(fā)的新能源汽車(chē)中隨機(jī)抽取10輛,設(shè)這10輛汽車(chē)中單次最大續(xù)航里程恰好在200千米到350千米之間的數(shù)量為,求;
(3)某汽車(chē)銷(xiāo)售公司為推廣此款新能源汽車(chē),現(xiàn)面向意向客戶(hù)推出“玩游戲,送大獎(jiǎng)”活動(dòng),客戶(hù)可根據(jù)拋擲硬幣的結(jié)果,操控微型遙控車(chē)在方格圖上行進(jìn),若遙控車(chē)最終停在“勝利大本營(yíng)”,則可獲得購(gòu)車(chē)優(yōu)惠券.已知硬幣出現(xiàn)正、反面的概率都是,方格圖上標(biāo)有第0格、第1格、第2格、…、第50格.遙控車(chē)開(kāi)始在第0格,客戶(hù)每擲一次硬幣,遙控車(chē)向前移動(dòng)一次,若擲出正面,遙控車(chē)向前移動(dòng)一格(從到),若擲出反面,遙控車(chē)向前移動(dòng)兩格(從到),直到遙控車(chē)移到第49格(勝利大本營(yíng))或第50格(失敗大本營(yíng))時(shí),游戲結(jié)束.設(shè)遙控車(chē)移到第格的概率為,其中,試說(shuō)明是等比數(shù)列,并解釋此方案能否成功吸引顧客購(gòu)買(mǎi)該款新能源汽車(chē).
參考數(shù)據(jù):若隨機(jī)變量服從正態(tài)分布,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下四個(gè)命題:①兩個(gè)隨機(jī)變量的線(xiàn)性相關(guān)性越強(qiáng),相關(guān)系數(shù)的絕對(duì)值越接近1;②在回歸分析中,可用相關(guān)指數(shù)的值判斷擬合效果,越小,模型的擬合效果越好; ③若數(shù)據(jù)的方差為1,則的方差為4;④已知一組具有線(xiàn)性相關(guān)關(guān)系的數(shù)據(jù),其線(xiàn)性回歸方程,則“滿(mǎn)足線(xiàn)性回歸方程”是“ ,”的充要條件;其中真命題的個(gè)數(shù)為( )
A.4B.3C.2D.1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com