分析 (Ⅰ)令t=log3x,(-1≤t≤1),則y=(t+m-1)2+2,由題意可得最小值只能在端點處取得,分別求得m的值,加以檢驗即可得到所求值;
(Ⅱ)判斷f(x)在(2,4)遞增,設x1>x2,則f(x1)>f(x2),原不等式即為f(x1)-f(x2)<k(x1-x2),即有f(x1)-kx1<f(x2)-kx2,由題意可得g(x)=f(x)-kx在(2,4)遞減.由g(x)=x2-(2+k)x+3,求得對稱軸,由二次函數的單調區(qū)間,即可得到所求范圍
解答 解(Ⅰ)令t=log3x+m,∵$x∈[\frac{1}{3},3]$,∴t∈[m-1,m+1],
從而y=f(t)=t2-2t+3=(t-1)2+2,t∈[m-1,m+1]
當m+1≤1,即m≤0時,${y_{min}}=f(m+1)={m^2}+2=3$,
解得m=-1或m=1(舍去),
當m-1<1<m+1,即0<m<2時,ymin=f(1)=2,不合題意,
當m-1≥1,即m≥2時,${y_{min}}=f(m-1)={m^2}-4m+6=3$,
解得m=3或m=1(舍去),
綜上得,m=-1或m=3,
(Ⅱ)不妨設x1<x2,易知f(x)在(2,4)上是增函數,故f(x1)<f(x2),
故|f(x1)-f(x2)|<k|x1-x2|可化為f(x2)-f(x1)<kx2-kx1,
即f(x2)-kx2<f(x1)-kx1(*),
令g(x)=f(x)-kx,x∈(2,4),即g(x)=x2-(2+k)x+3,x∈(2,4),
則(*)式可化為g(x2)<g(x1),即g(x)在(2,4)上是減函數,
故$\frac{2+k}{2}≥4$,得k≥6,
故k的取值范圍為[6,+∞)
點評 本題考查函數的最值的求法,注意運用換元法和二次函數的最值的求法,考查不等式恒成立問題的解法,注意運用構造法,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | sinθ-cosθ | B. | cosθ-sinθ | C. | ±(sinθ-cosθ) | D. | sinθ+cosθ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 4$\sqrt{2}$ | B. | $\sqrt{5}$ | C. | 3 | D. | 5 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com