分析 (1)由nan+1=2(n+1)an⇒$\frac{{a}_{n+1}}{n+1}=2×\frac{{a}_{n}}{n}$,即bn+1=2bn.
(2)由(1)得an=nbn=n•2n.錯(cuò)位相減法求和即可.
解答 解:(1)因?yàn)閚an+1=2(n+1)an
所以$\frac{{a}_{n+1}}{n+1}=2×\frac{{a}_{n}}{n}$,即bn+1=2bn
所以{bn}是以b1=2為首項(xiàng),公比q=2的等比數(shù)列.
所以數(shù)列{bn}的通項(xiàng)bn=2×2n-1=2n.
(2)由(1)得an=nbn=n•2n.
所以 sn=1•2+2•22+3•23+…+(n-1)2n-1+n•2n.;
2 sn=1•22+2•23+3•24+…+(n-1)2n+n•2n+1.;
所以-sn=2+22+23+24+…+2n-n•2n+1=$\frac{2(1-{2}^{n})}{1-2}-n•{2}^{n+1}$.
所以sn=(n-1)•2n+1+2
點(diǎn)評(píng) 本題考查了等比數(shù)列的判定,及錯(cuò)位相減法求和,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=3-x | B. | f(x)=(x-1)2 | C. | f(x)=$\frac{1}{x}$ | D. | f(x)=x2+2x |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com