16.若θ為第四象限的角,且$sinθ=-\frac{1}{3}$,則cosθ=$\frac{2\sqrt{2}}{3}$;sin2θ=-$\frac{4\sqrt{2}}{9}$.

分析 由已知利用同角三角函數(shù)基本關(guān)系式可求cosθ,進(jìn)而利用二倍角的正弦函數(shù)公式可求sin2θ的值.

解答 解:∵θ為第四象限的角,且$sinθ=-\frac{1}{3}$,
∴cosθ=$\sqrt{1-si{n}^{2}θ}$=$\frac{2\sqrt{2}}{3}$,
sin2θ=2sinθcosθ=2×(-$\frac{1}{3}$)×$\frac{2\sqrt{2}}{3}$=-$\frac{4\sqrt{2}}{9}$.
故答案為:$\frac{2\sqrt{2}}{3}$,-$\frac{4\sqrt{2}}{9}$.

點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,二倍角的正弦函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,2QA=2AB=PD
(Ⅰ)證明:PQ⊥QC
(Ⅱ)求棱錐Q-ABCD的體積與棱錐P-DCQ的體積的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.近年來我國電子商務(wù)行業(yè)發(fā)展迅速,相關(guān)管理部門推出了針對(duì)電商的商品質(zhì)量和服務(wù)評(píng)價(jià)的評(píng)價(jià)體系,現(xiàn)從評(píng)價(jià)系統(tǒng)中選出某商家的200次成功交易,發(fā)現(xiàn)對(duì)商品質(zhì)量的好評(píng)率為0.6,對(duì)服務(wù)評(píng)價(jià)的好評(píng)率為0.75,其中對(duì)商品質(zhì)量和服務(wù)評(píng)價(jià)都做出好評(píng)的交易80次.
(1)是否可以在犯錯(cuò)誤概率不超過0.5%的前提下,認(rèn)為商品質(zhì)量與服務(wù)好評(píng)有關(guān)?
(2)若將頻率視為概率,某人在該購物平臺(tái)上進(jìn)行的5次購物中,設(shè)對(duì)商品質(zhì)量和服務(wù)評(píng)價(jià)全好評(píng)的次數(shù)為隨機(jī)變量X,求X的分布列(可用組合數(shù)公式表示)和數(shù)學(xué)期望.
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
參考公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知各項(xiàng)都不相等的數(shù)列{an}滿足n≥2,$a_n^2+a_{n-1}^2-2{a_n}{a_{n-1}}-{a_n}+{a_{n-1}}=0$,a1=3.
(1)求數(shù)列的通項(xiàng)公式an
(2)若${b_n}=\frac{1}{{n{a_n}}}$,求數(shù)列{bn}的前n項(xiàng)和Sn
(3)證明:${S_n}≥\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=sinx-cosx的圖象( 。
A.關(guān)于直線$x=\frac{π}{4}$對(duì)稱B.關(guān)于直線$x=-\frac{π}{4}$對(duì)稱
C.關(guān)于直線$x=\frac{π}{2}$對(duì)稱D.關(guān)于直線$x=-\frac{π}{2}$對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知φ∈(0,π),且$tan(φ+\frac{π}{4})=-\frac{1}{3}$.
(Ⅰ)求tan2φ的值;
(Ⅱ)求$\frac{sinφ+cosφ}{2cosφ-sinφ}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在如圖所示的三角形空地中,欲建一個(gè)面積不小于200m2的內(nèi)接矩形花園(陰影部分),則其邊長x(單位:m)的取值范圍是[10,20].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知二次函數(shù)f(x)=x2-2x+3
(Ⅰ)若函數(shù)$y=f({log_3}x+m),x∈[\frac{1}{3},3]$的最小值為3,求實(shí)數(shù)m的值;
(Ⅱ)若對(duì)任意互不相同的x1,x2∈(2,4),都有|f(x1)-f(x2)|<k|x1-x2|成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知f(x)=$\frac{2x-a}{{x}^{2}+2}$(x∈R).  
(1)若函數(shù)f(x)為奇函數(shù),求實(shí)數(shù)a的值;
(2)若函數(shù)f(x)在區(qū)間[-1,1]上是增函數(shù),求實(shí)數(shù)a的值組成的集合A;
(3)設(shè)關(guān)于x的方程f(x)=$\frac{1}{x}$的兩個(gè)非零實(shí)根為x1,x2,試問:是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案