【題目】某歌舞團(tuán)有名演員,他們編排了一些節(jié)目,每個(gè)節(jié)目都由四名演員同臺表演.在一次演出中,他們發(fā)現(xiàn):能適當(dāng)安排若干個(gè)節(jié)目,使團(tuán)中每兩名演員都恰有一次在這次演出中同臺表演。求的最小值。
【答案】13
【解析】
用個(gè)點(diǎn)表示名演員。
若某兩名演員有一次同臺表演,則將對應(yīng)的點(diǎn)連邊。于是,本題的條件等價(jià)于:
能將階完全圖分割為若干個(gè)4階完全圖,使每一條邊都恰屬于一個(gè)。
首先,由題設(shè)知,即。
故。
其次,考慮含點(diǎn)(為端點(diǎn))的邊,共有條,每條邊都恰屬于一個(gè),從而,共有個(gè)含點(diǎn)(為端點(diǎn))的。但每個(gè)含點(diǎn)的都有三條含點(diǎn)的邊,從而,每個(gè)都被計(jì)算3次。
于是,。
所以,。
最后,將13個(gè)點(diǎn)用表示。對,令組成一個(gè)(點(diǎn)是在模13意義下)。則13個(gè)是符合條件的分割。
綜上,的最小值為13。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四面體ABCD中,平面DAC⊥底面ABC,,AD=CD=,O是AC的中點(diǎn),E是BD的中點(diǎn).
(1)證明:DO⊥底面ABC;
(2)求二面角D-AE-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯(cuò)誤的是( )
A.在回歸直線方程中,當(dāng)解釋變量x每增加1個(gè)單位時(shí),預(yù)報(bào)變量平均增加個(gè)單位.
B.對分類變量X與Y,隨機(jī)變量的觀測值k越大,則判斷“X與Y有關(guān)系”的把握程度越小.
C.兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值就越接近于1.
D.回歸直線過樣本點(diǎn)的中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】今年4月23日我市正式宣布實(shí)施“3+1+2”的高考新方案,“3”是指必考的語文、數(shù)學(xué)、外語三門學(xué)科,“1”是指在物理和歷史中必選一科,“2”是指在化學(xué)、生物、政治、地理四科中任選兩科.為了解我校高一學(xué)生在物理和歷史中的選科意愿情況,進(jìn)行了一次模擬選科. 已知我校高一參與物理和歷史選科的有1800名學(xué)生,其中男生1000人,女生800人. 按分層抽樣的方法從中抽取了36個(gè)樣本,統(tǒng)計(jì)知其中有17個(gè)男生選物理,6個(gè)女生選歷史.
(I)根據(jù)所抽取的樣本數(shù)據(jù),填寫答題卷中的列聯(lián)表. 并根據(jù)統(tǒng)計(jì)量判斷能否有的把握認(rèn)為選擇物理還是歷史與性別有關(guān)?
(II)在樣本里選歷史的人中任選4人,記選出4人中男生有人,女生有人,求隨機(jī)變量 的分布列和數(shù)學(xué)期望.(的計(jì)算公式見下),臨界值表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),()是任意的和為正數(shù)的個(gè)不同的實(shí)數(shù),(.)是這個(gè)數(shù)的一個(gè)排列.若對任意的,有,則稱()是一個(gè)“好排列”.求好排列個(gè)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),則以下結(jié)論正確的是( )
A.函數(shù)的單調(diào)減區(qū)間是
B.函數(shù)有且只有1個(gè)零點(diǎn)
C.存在正實(shí)數(shù),使得成立
D.對任意兩個(gè)正實(shí)數(shù),,且,若則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】利用獨(dú)立性檢驗(yàn)的方法調(diào)查高中生性別與愛好某項(xiàng)運(yùn)動(dòng)是否有關(guān),通過隨機(jī)調(diào)查200名高中生是否愛好某項(xiàng)運(yùn)動(dòng),利用列聯(lián)表,由計(jì)算可得,參照下表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5,024 | 6.635 | 7.879 | 10.828 |
得到的正確結(jié)論是( )
A. 有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
B. 有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
C. 在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D. 在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),以軸正半軸為極軸并取相同的單位長度建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程,并說明其表示什么軌跡;
(2)若直線的極坐標(biāo)方程為,求曲線上的點(diǎn)到直線的最大距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了提高利潤,從2012年至2018年每年對生產(chǎn)環(huán)節(jié)的改進(jìn)進(jìn)行投資,投資金額與年利潤增長的數(shù)據(jù)如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
投資金額(萬元) | |||||||
年利潤增長(萬元) |
(1)請用最小二乘法求出關(guān)于的回歸直線方程;如果2019年該公司計(jì)劃對生產(chǎn)環(huán)節(jié)的改進(jìn)的投資金額為萬元,估計(jì)該公司在該年的年利潤增長為多少?(結(jié)果保留兩位小數(shù))
(2)現(xiàn)從2012年—2018年這年中抽出三年進(jìn)行調(diào)查,記年利潤增長投資金額,設(shè)這三年中(萬元)的年份數(shù)為,求隨機(jī)變量的分布列與期望.
參考公式:.
參考數(shù)據(jù):,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com