如圖,l1、l2是互相垂直的異面直線,MN是它們的公垂線段.點A、B在l1上,C在l2上,AM=MB=MN.

(1)證明AC⊥NB;

(2)若∠ACB=60°,求NB與平面ABC所成角的余弦值.

(1)證明:由已知l2⊥MN,l2⊥l1,MN∩l1=M,可得l2⊥平面ABN.

由已知MN⊥l1,AM=MB=MN,可知AN=NB且AN⊥NB.

又AN為AC在平面ABN內(nèi)的射影,

∴AC⊥NB.

(2)解:∵Rt△CNA≌Rt△CNB,

∴AC=BC.又已知∠ACB=60°,因此△ABC為正三角形.

∵Rt△ANB≌Rt△CNB,

∴NC=NA=NB,因此N在平面ABC內(nèi)的射影H是正△ABC的中心,連結(jié)BH,∠NBH為NB與平面ABC所成的角.

在Rt△NHB中,cos∠NBH=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如下圖,l1、l2是互相垂直的異面直線,MN是它們的公垂線段,點A、B在l1上,C在l2上,AM=MB=MN.

(1)證明AC⊥NB;

(2)若∠ACB=60°,求NB與平面ABC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,l1、l2是互相垂直的異面直線,MN是它們的公垂線段.點A、B在l1上,C在l2上,AM=MB=MN.

(Ⅰ)證明AC⊥NB;

(Ⅱ)若∠ACB=60°,求NB與平面ABC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(19)如圖,l1、l2是互相垂直的異面直線,MN是它們的公垂線段,點A、B在l1上,C在l2上,AM=MB=MN。

(Ⅰ)證明;

(Ⅱ)若,求NB與平面ABC所成角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,l1、l2是互相垂直的異面直線,MN是它們的公垂線段.點A、B在l1上,C在l2上,AM=MB=MN.

(1)證明AC⊥NB;

(2)若∠ACB=60°,求NB與平面ABC所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案