(08年揚州中學) 已知函數(shù)有下列性質(zhì):“若

使得”成立,

(1)利用這個性質(zhì)證明唯一.

     (2)設(shè)A、B、C是函數(shù)圖象上三個不同的點,求證:△ABC是鈍角三角形.

          

解析:(1)證明:假設(shè)存在

  …………①

  …………②

①-②得, 

,

上的單調(diào)增函數(shù).

矛盾,即是唯一的.

(2)證明:設(shè)

上的單調(diào)減函數(shù).

為鈍角.

故△ABC為鈍角三角形.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

 (08年揚州中學)  中,角A、B、C所對的邊分別為、、,已知

(1)求的值;(2)求的面積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

 (08年揚州中學) 已知數(shù)列中,,且是函數(shù)

的一個極值點.

(1)求數(shù)列的通項公式;

(2) 若點的坐標為(1,)(,過函數(shù)圖像上的點 的切線始終與平行(O 為原點),求證:當 時,不等式

對任意都成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

 (08年揚州中學)

    

     (1)推導sin3α關(guān)于sinα的表達式;

(2)求sin18°的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

 (08年揚州中學)已知函數(shù).

(1)求證:函數(shù)內(nèi)單調(diào)遞增;

(2)若關(guān)于的方程上有解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

 (08年揚州中學) (16分)

表示數(shù)列從第項到第項(共項)之和.

(1)在遞增數(shù)列中,是關(guān)于的方程為正整數(shù))的兩個根.求的通項公式并證明是等差數(shù)列;

(2)對(1)中的數(shù)列,判斷數(shù)列,,…,的類型;

(3)對一般的首項為,公差為的等差數(shù)列,提出與(2)類似的問題,你可以得到怎樣的結(jié)論,證明你的結(jié)論.

 

查看答案和解析>>

同步練習冊答案