【題目】已知函數(shù)fx=Asin(ωx+)(A0,ω>0||)的部分圖象如圖所示.

(Ⅰ)求fx)的解析式;

(Ⅱ)若對于任意的x[0,m]fx)≥1恒成立,求m的最大值.

【答案】III

【解析】

(Ⅰ)由圖象可知,A2.可求函數(shù)的周期,利用周期公式可求ω的值,又函數(shù)fx)的圖象經(jīng)過點,可得,結(jié)合范圍,可求,即可得解函數(shù)解析式;(Ⅱ)由x[0m],可得:,根據(jù)正弦函數(shù)的單調(diào)性,分類討論即可得解m的最大值.

(Ⅰ)由圖象可知,A=2.

因為,

所以T=π.

所以.解得ω=2.

又因為函數(shù)fx)的圖象經(jīng)過點,

所以

解得

又因為

所以

所以

(Ⅱ)因為 x∈[0,m],

所以,

時,即時,fx)單調(diào)遞增,

所以fx)≥f(0)=1,符合題意;

時,即時,fx)單調(diào)遞減,

所以,符合題意;

時,即時,fx)單調(diào)遞減,

所以,不符合題意;

綜上,若對于任意的x∈[0,m],有fx)≥1恒成立,則必有,

所以m的最大值是

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為,過橢圓的焦點且與長軸垂直的弦長為1

1)求橢圓C的方程;

2)設(shè)點M為橢圓上第一象限內(nèi)一動點,AB分別為橢圓的左頂點和下頂點,直線MBx軸交于點C,直線MAy軸交于點D,求證:四邊形ABCD的面積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1(側(cè)棱垂直于底面的棱柱)中,CA⊥CB,CA=CB=CC1=2,動點D在線段AB上.

(1)求證:當點D為AB的中點時,平面B1CD⊥上平面ABB1A1;

(2)當AB=3AD時,求平面B1CD與平面BB1C1C所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列五個命題:

R上的增函數(shù)的充分不必要條件;

②函數(shù)有兩個零點;

③集合,,從A,B中各任意取一個數(shù),則這兩數(shù)之和等于4的概率是

④動圓C既與定圓相外切,又與y軸相切,則圓心C的軌跡方程是;

⑤若對任意的正數(shù)x,不等式恒成立,則實數(shù)a的取值范圍是.

其中正確的命題序號是________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知點F為拋物線C)的焦點,過點F的動直線l與拋物線C交于M,N兩點,且當直線l的傾斜角為45°時,.

1)求拋物線C的方程.

2)試確定在x軸上是否存在點P,使得直線PMPN關(guān)于x軸對稱?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著改革開放的不斷深入,祖國不斷富強,人民的生活水平逐步提高,為了進一步改善民生,日起我國實施了個人所得稅的新政策,其政策的主要內(nèi)容包括:(1)個稅起征點為元;(2)每月應納稅所得額(含稅)收入個稅起征點專項附加扣除;(3)專項附加扣除包括①贍養(yǎng)老人費用②子女教育費用③繼續(xù)教育費用④大病醫(yī)療費用等,其中前兩項的扣除標準為:①贍養(yǎng)老人費用:每月扣除元②子女教育費用:每個子女每月扣除

新個稅政策的稅率表部分內(nèi)容如下:

級數(shù)

一級

二級

三級

四級

每月應納稅所得額(含稅)

不超過元的部分

超過元至元的部分

超過元至元的部分

超過元至元的部分

稅率

(1)現(xiàn)有李某月收入元,膝下有一名子女,需要贍養(yǎng)老人,(除此之外,無其它專項附加扣除)請問李某月應繳納的個稅金額為多少?

(2)現(xiàn)收集了某城市名年齡在歲到歲之間的公司白領(lǐng)的相關(guān)資料,通過整理資料可知,有一個孩子的有人,沒有孩子的有人,有一個孩子的人中有人需要贍養(yǎng)老人,沒有孩子的人中有人需要贍養(yǎng)老人,并且他們均不符合其它專項附加扣除(受統(tǒng)計的人中,任何兩人均不在一個家庭).若他們的月收入均為元,試求在新個稅政策下這名公司白領(lǐng)的月平均繳納個稅金額為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線的焦點且斜率為的直線交拋物線兩點,且

(1)求的值;

(2)拋物線上一點,直線(其中)與拋物線交于兩個不同的點(均與點不重合),設(shè)直線的斜率分別為,,.動點在直線上,且滿足,其中為坐標原點.當線段最長時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將紅、黑、藍、白5張紙牌(其中白紙牌有2張)隨機分發(fā)給甲、乙、丙、丁4個人,每人至少分得1張,則下列兩個事件為互斥事件的是( )

A. 事件“甲分得1張白牌”與事件“乙分得1張紅牌”

B. 事件“甲分得1張紅牌”與事件“乙分得1張藍牌”

C. 事件“甲分得1張白牌”與事件“乙分得2張白牌”

D. 事件“甲分得2張白牌”與事件“乙分得1張黑牌”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)為常數(shù),)的圖象關(guān)于直線對稱,則函數(shù)的圖象( 。

A. 關(guān)于直線對稱B. 關(guān)于直線對稱

C. 關(guān)于點對稱D. 關(guān)于點對稱

查看答案和解析>>

同步練習冊答案