【題目】若函數(shù)為常數(shù),)的圖象關(guān)于直線對(duì)稱,則函數(shù)的圖象( 。
A. 關(guān)于直線對(duì)稱B. 關(guān)于直線對(duì)稱
C. 關(guān)于點(diǎn)對(duì)稱D. 關(guān)于點(diǎn)對(duì)稱
【答案】D
【解析】
利用三角函數(shù)的對(duì)稱性求得a的值,可得g(x)的解析式,再代入選項(xiàng),利用正弦函數(shù)的圖象的對(duì)稱性,得出結(jié)論.
解:∵函數(shù)f(x)=asinx+cosx(a為常數(shù),x∈R)的圖象關(guān)于直線x=對(duì)稱,
∴f(0)=f(),即,∴a=,
所以函數(shù)g(x)=sinx+acosx=sinx+cosx=sin(x+),
當(dāng)x=﹣時(shí),g(x)=-,不是最值,故g(x)的圖象不關(guān)于直線x=﹣對(duì)稱,故A錯(cuò)誤,
當(dāng)x=時(shí),g(x)=1,不是最值,故g(x)的圖象不關(guān)于直線x=對(duì)稱,故B錯(cuò)誤,
當(dāng)x=時(shí),g(x)=≠0,故C錯(cuò)誤,
當(dāng)x=時(shí),g(x)=0,故D正確,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(一),在直角梯形中,,,,是的中點(diǎn),將沿折起,使點(diǎn)到達(dá)點(diǎn)的位置得到圖(二),點(diǎn)為棱上的動(dòng)點(diǎn).
(1)當(dāng)在何處時(shí),平面平面,并證明;
(2)若,,證明:點(diǎn)到平面的距離等于點(diǎn)到平面的距離,并求出該距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=-ln(x+m).
(1)設(shè)x=0是f(x)的極值點(diǎn),求m,并討論f(x)的單調(diào)性;
(2)當(dāng)m≤2時(shí),證明f(x)>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O經(jīng)過橢圓C:=1(a>b>0)的兩個(gè)焦點(diǎn)以及兩個(gè)頂點(diǎn),且點(diǎn)(b,)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l與圓O相切,與橢圓C交于M、N兩點(diǎn),且|MN|=,求直線l的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的焦距為2,左右焦點(diǎn)分別為,,以原點(diǎn)O為圓心,以橢圓C的半短軸長(zhǎng)為半徑的圓與直線相切.
Ⅰ求橢圓C的方程;
Ⅱ設(shè)不過原點(diǎn)的直線l:與橢圓C交于A,B兩點(diǎn).
若直線與的斜率分別為,,且,求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo);
若直線l的斜率是直線OA,OB斜率的等比中項(xiàng),求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn),直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)若直線與曲線相交于不同的兩點(diǎn)是線段的中點(diǎn),當(dāng)時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱 中,,,,且.
(Ⅰ)求證:平面 ;
(Ⅱ) 求證: ;
(Ⅲ) 若 ,判斷直線 與平面 是否垂直?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,該幾何體由半圓柱體與直三棱柱構(gòu)成,半圓柱體底面直徑,,,D為半圓弧的中點(diǎn),若異面直線BD和所成角的大小為.
(1)證明:平面;
(2)求該幾何體的表面積和體積;
(3)求點(diǎn)D到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com