(Ⅰ)討論函數(shù)的單調性;
(Ⅱ)若,證明:時,成立
(Ⅰ)(Ⅱ)詳見解析

試題分析:(Ⅰ) 利用導數(shù)分析單調性,注意分類討論;(Ⅱ)利用導數(shù)分析單調性,進而求最值
試題解析:(Ⅰ)的定義域為,
(1)當時,解得;解得
所以函數(shù),上單調遞增,在上單調遞減;
(2)當時,恒成立,所以函數(shù)上單調遞增;
(3)當時,解得;解得
所以函數(shù)上單調遞增,在上單調遞減    (6分)
(Ⅱ)證明:不等式等價于
因為,所以,
因此
,則
得:當,
所以上單調遞減,從而  即,
上單調遞減,得:,
時,    (12分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知為函數(shù)圖象上一點,為坐標原點,記直線的斜率
(1)若函數(shù)在區(qū)間上存在極值,求實數(shù)的取值范圍;
(2)當時,不等式恒成立,求實數(shù)的取值范圍;
(3)求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=ln-a+x(a>0).
(Ⅰ)若,求f(x)圖像在x=1處的切線的方程;
(Ⅱ)若的極大值和極小值分別為m,n,證明:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),(其中m為常數(shù)).
(1) 試討論在區(qū)間上的單調性;
(2) 令函數(shù).當時,曲線上總存在相異兩點、,使得過、點處的切線互相平行,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),為函數(shù)的導函數(shù).
(1)設函數(shù)f(x)的圖象與x軸交點為A,曲線y=f(x)在A點處的切線方程是,求的值;
(2)若函數(shù),求函數(shù)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(1)若函數(shù)的圖象在處的切線斜率為,求實數(shù)的值;
(2)在(1)的條件下,求函數(shù)的單調區(qū)間;
(3)若函數(shù)上是減函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)滿足,,則不等式的解集為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是函數(shù)的導數(shù),則的值是(  )
A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,若f(3)="3f" ′(x0),則x0=(   )
A.±1B.±2C.±D.2

查看答案和解析>>

同步練習冊答案