【題目】已知,定點(diǎn),定直線和上的動(dòng)點(diǎn)滿(mǎn)足:在直線的同側(cè),點(diǎn)在直線的另一側(cè).以為焦點(diǎn)作與直線相切的橢圓,且當(dāng)在上運(yùn)動(dòng)時(shí),橢圓的長(zhǎng)軸長(zhǎng)為定值.
(1)求直線的方程;
(2)對(duì)于第一象限內(nèi)任意2012個(gè)在橢圓上的點(diǎn),是否一定可以將它們分成兩組,使得其中一組點(diǎn)的橫坐標(biāo)之和不大于2013,另一組點(diǎn)的縱坐標(biāo)之和不大于2013?請(qǐng)證明你的結(jié)論.
【答案】(1)(2)見(jiàn)解析
【解析】
(1)設(shè)點(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn)為.則過(guò)橢圓與直線的切點(diǎn).從而, (即橢圓的長(zhǎng)軸長(zhǎng))為定值.于是,點(diǎn)Q在以為圓心、為半徑的圓上.
由的任意性及在上,知.故點(diǎn)與重合,即直線為線段的中垂線.
注意到,.
因?yàn)?/span>的中點(diǎn)為,所以,直線的方程為.
(2)可以.
設(shè)這2012個(gè)點(diǎn)為.
由(1)知直線的方程為.
又易知點(diǎn)在直線的下方,故,且.
不失一般性,不妨設(shè).
(i)若,則將點(diǎn)分為一組,點(diǎn)作為一組符合題意.
(ii)若,則存在,使得
,且.
于是,對(duì)任意的,有.
故
將點(diǎn)分為一組,點(diǎn)分為一組.則前一組點(diǎn)的橫坐標(biāo)之和不大于2013,后一組點(diǎn)的縱坐標(biāo)之和不大于2013.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,直線的參數(shù)方程是(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.將曲線上每一點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的兩倍(縱坐標(biāo)不變)得到曲線.
(1)求曲線的直角坐標(biāo)方程;
(2)已知點(diǎn),若直線與曲線交于,兩點(diǎn),且,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),討論極值點(diǎn)的個(gè)數(shù);
(2)若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)外接圓上三段弧的中點(diǎn)依次為,其關(guān)于的對(duì)稱(chēng)點(diǎn)依次為.若頂點(diǎn)與對(duì)應(yīng)旁切圓切點(diǎn)的連線交于一點(diǎn) (界心),為的垂心,證明:在以為直徑的圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2-mlnx,h(x)=x2-x+a.
(1)當(dāng)a=0時(shí),f(x)≥h(x)在(1,+∞)上恒成立,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)m=2時(shí),若函數(shù)k(x)=f(x)-h(x)在區(qū)間(1,3)上恰有兩個(gè)不同零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某次會(huì)操活動(dòng)中,領(lǐng)操員讓編號(hào)為的名學(xué)生排成一個(gè)圓形陣,做循環(huán)報(bào)數(shù),領(lǐng)操員一一記錄報(bào)數(shù)者的編號(hào),并要求報(bào)l、2的學(xué)生出列,報(bào)3的學(xué)生留在隊(duì)列中,并將編號(hào)改為此次循環(huán)報(bào)數(shù)中三名學(xué)生的編號(hào)之和.一直循環(huán)報(bào)數(shù)下去.當(dāng)操場(chǎng)上剩余的學(xué)生人數(shù)不超過(guò)兩名時(shí),報(bào)數(shù)活動(dòng)結(jié)束.領(lǐng)操員記錄最后留在操場(chǎng)的學(xué)生編號(hào)(例如,編號(hào)為的九名學(xué)生排成一個(gè)圓形陣,報(bào)數(shù)結(jié)束后,只有原始編號(hào)為9的學(xué)生留在操場(chǎng),此時(shí),他的編號(hào)為45,領(lǐng)操員記錄下來(lái)的數(shù)據(jù)分別為l,2,3,4,5,6,7,8,9,6,15,24,45).已知共有2011名學(xué)生參加會(huì)操.
(1)最后留在場(chǎng)內(nèi)的學(xué)生最初的編號(hào)是幾號(hào)?
(2)求領(lǐng)操員記錄下的編號(hào)之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為抗擊新冠病毒,某部門(mén)安排甲、乙、丙、丁、戊五名專(zhuān)家到三地指導(dǎo)防疫工作.因工作需要,每地至少需安排一名專(zhuān)家,其中甲、乙兩名專(zhuān)家必須安排在同一地工作,丙、丁兩名專(zhuān)家不能安排在同一地工作,則不同的分配方法總數(shù)為( )
A.18B.24C.30D.36
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2022年北京冬奧運(yùn)動(dòng)會(huì)即第24屆冬季奧林匹克運(yùn)動(dòng)會(huì)將在2022年2月4日至2月20日在北京和張家口舉行,某研究機(jī)構(gòu)為了了解大學(xué)生對(duì)冰壺運(yùn)動(dòng)的興趣,隨機(jī)從某大學(xué)生中抽取了120人進(jìn)行調(diào)查,經(jīng)統(tǒng)計(jì)男生與女生的人數(shù)比為11:13,男生中有30人表示對(duì)冰壺運(yùn)動(dòng)有興趣,女生中有15人對(duì)冰壺運(yùn)動(dòng)沒(méi)有興趣.
(1)完成列聯(lián)表,并判斷能否有99%的把握認(rèn)為“對(duì)冰壺運(yùn)動(dòng)是否有興趣與性別有關(guān)”?
有興趣 | 沒(méi)有興趣 | 合計(jì) | |
男 | 30 | ||
女 | 15 | ||
合計(jì) | 120 |
(2)用分層抽樣的方法從樣本中對(duì)冰壺運(yùn)動(dòng)有興趣的學(xué)生中抽取8人,求抽取的男生和女生分別為多少人?若從這8人中選取兩人作為冰壺運(yùn)動(dòng)的宣傳員,求選取的2人中恰好有1位男生和1位女生的概率.
附:,其中n=a+b+c+d
P | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某知名電商在雙十一購(gòu)物狂歡節(jié)中成交額再創(chuàng)新高,月日單日成交額達(dá)億元.某店主在此次購(gòu)物狂歡節(jié)期間開(kāi)展了促銷(xiāo)活動(dòng),為了解買(mǎi)家對(duì)此次促銷(xiāo)活動(dòng)的滿(mǎn)意情況,隨機(jī)抽取了參與活動(dòng)的位買(mǎi)家,調(diào)查了他們的年齡層次和購(gòu)物滿(mǎn)意情況,得到年齡層次的頻率分布直方圖和“購(gòu)物評(píng)價(jià)為滿(mǎn)意”的年齡層次頻數(shù)分布表.年齡層次的頻率分布直方圖:
“購(gòu)物評(píng)價(jià)為滿(mǎn)意”的年齡層次頻數(shù)分布表:
年齡(歲) | |||||
頻數(shù) |
(1)估計(jì)參與此次活動(dòng)的買(mǎi)家的平均年齡(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值做代表);
(2)若年齡在歲以下的稱(chēng)為“青年買(mǎi)家”,年齡在歲以上(含歲)的稱(chēng)為“中年買(mǎi)家”,完成下面的列聯(lián)表,并判斷能否有的把握認(rèn)為中、青年買(mǎi)家對(duì)此次活動(dòng)的評(píng)價(jià)有差異?
評(píng)價(jià)滿(mǎn)意 | 評(píng)價(jià)不滿(mǎn)意 | 合計(jì) | |
中年買(mǎi)家 | |||
青年買(mǎi)家 | |||
合計(jì) |
附:參考公式:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com