【題目】在△ABC中,cos2A﹣3cos(B+C)﹣1=0.
(1)求角A的大小;
(2)若△ABC的外接圓半徑為1,試求該三角形面積的最大值.

【答案】
(1)解:∵cos2A﹣3cos(B+C)﹣1=0.

∴2cos2A+3cosA﹣2=0,

∴解得:cosA= ,或﹣2(舍去),

又∵0<A<π,

∴A=


(2)解:∵a=2RsinA= ,

又∵a2=b2+c2﹣2bccosA=b2+c2﹣bc≥bc,

∴bc≤3,當且僅當b=c時取等號,

∴SABC= bcsinA= bc≤ ,

∴三角形面積的最大值為


【解析】(1)由已知利用二倍角的余弦函數(shù)公式,三角形內角和定理,誘導公式化簡可得2cos2A+3cosA﹣2=0,解得cosA的值,結合范圍0<A<π,即可得解A的值.(2)由已知及正弦定理可求a=2RsinA= ,又利用余弦定理,基本不等式可得bc≤3,利用三角形面積公式即可得解三角形面積的最大值.
【考點精析】通過靈活運用余弦定理的定義,掌握余弦定理:;;即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的函數(shù)滿足:函數(shù)的圖象關于直線對稱,且當是函數(shù)的導函數(shù))成立.若,則的大小關系是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知平面直角坐標系,以為極點, 軸的非負半軸為極軸建立極坐標系, 點的極坐標為,曲線的參數(shù)方程為為參數(shù)).

(1)寫出點的直角坐標及曲線的直角坐標方程;

(2)若為曲線上的動點,求的中點到直線 的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線經(jīng)過兩條直線l1:3x+4y﹣5=0和l2:2x﹣3y+8=0的交點M.
(1)若直線l與直線2x+y+2=0垂直,求直線l的方程;
(2)若直線l′與直線l1關于點(1,﹣1)對稱,求直線l′的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ)(其中 )的圖象如圖所示,為了得到g(x)=sin2x的圖象,則只需將f(x)的圖象(

A.向右平移 個長度單位
B.向右平移 個長度單位
C.向左平移 個長度單位
D.向左平移 個長度單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某機床廠今年初用98萬元購進一臺數(shù)控機床,并立即投入使用,計劃第一年維修、保養(yǎng)費用12萬元,從第二年開始,每年的維修、保養(yǎng)修費用比上一年增加4萬元,該機床使用后,每年的總收入為50萬元,設使用x年后數(shù)控機床的盈利總額y元.
(1)寫出y與x之間的函數(shù)關系式;
(2)從第幾年開始,該機床開始盈利?
(3)使用若干年后,對機床的處理有兩種方案:①當年平均盈利額達到最大值時,以30萬元價格處理該機床;②當盈利額達到最大值時,以12萬元價格處理該機床.問哪種方案處理較為合理?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),若在定義域內存在實數(shù),滿足,則稱為“類函數(shù)”.

(1)已知函數(shù),試判斷是否為“類函數(shù)”?并說明理由;

(2)設是定義在上的“類函數(shù)”,求是實數(shù)的最小值;

(3)若 為其定義域上的“類函數(shù)”,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某人在如圖所示的直角邊長為4米的三角形地塊的每個格點(指縱、橫直線的交叉點以及三角形的頂點)處都種了一株相同品種的作物.根據(jù)歷年的種植經(jīng)驗,一株該種作物的年收獲量Y(單位:kg)與它的相近作物株數(shù)X之間的關系如下表所示:

X

1

2

3

4

Y

51

48

45

42

這里,兩株作物相近是指它們之間的直線距離不超過1米.

(1)從三角形地塊的內部和邊界上分別隨機選取一株作物,求它們恰好相近的概率;

(2)從所種作物中隨機選取一株,求它的年收獲量的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以為極點, 軸的正半軸為極軸建立極坐標系,直線的參數(shù)方程為,曲線的極坐標方程為.

(1)寫出直線的直角坐標方程和曲線的普通方程;

(2)求直線與曲線的交點的直角坐標.

查看答案和解析>>

同步練習冊答案