已知點(diǎn)A, B的坐標(biāo)分別為(-5,0),(5,0),直線AM,BM相交于點(diǎn)M, 且它們的斜率之積是,則點(diǎn)M的軌跡方程為                       

 

【答案】

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列中,N*),數(shù)列中,N*),已知點(diǎn)則向量的坐標(biāo)為(     )

A.       B.

C.       D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A,B分別是射線l1:y=x(x≥0),l2:y=-x(x≥0)上的動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),且△OAB的面積為定值2.

(1)求線段AB中點(diǎn)M的軌跡C的方程;

(2)過(guò)點(diǎn)N(0,2)作直線l,與曲線C交于不同的兩點(diǎn)P,Q,與射線l1,l2分別交于點(diǎn)R,S,若點(diǎn)P,Q恰為線段RS的兩個(gè)三等分點(diǎn),求此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年全國(guó)普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(北京卷解析版) 題型:解答題

已知曲線C:(m∈R)

(1)   若曲線C是焦點(diǎn)在x軸點(diǎn)上的橢圓,求m的取值范圍;

(2)     設(shè)m=4,曲線c與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),直線y=kx+4與曲線c交于不同的兩點(diǎn)M、N,直線y=1與直線BM交于點(diǎn)G.求證:A,G,N三點(diǎn)共線。

【解析】(1)曲線C是焦點(diǎn)在x軸上的橢圓,當(dāng)且僅當(dāng)解得,所以m的取值范圍是

(2)當(dāng)m=4時(shí),曲線C的方程為,點(diǎn)A,B的坐標(biāo)分別為

,得

因?yàn)橹本與曲線C交于不同的兩點(diǎn),所以

設(shè)點(diǎn)M,N的坐標(biāo)分別為,則

直線BM的方程為,點(diǎn)G的坐標(biāo)為

因?yàn)橹本AN和直線AG的斜率分別為

所以

,故A,G,N三點(diǎn)共線。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A,B是拋物線上原點(diǎn)以外的兩動(dòng)點(diǎn),若,則直線AB交拋物線的對(duì)稱(chēng)軸于定點(diǎn)N的坐標(biāo)為              (     )

A.       B.      C.      D.

查看答案和解析>>

同步練習(xí)冊(cè)答案