【題目】在銳角中,已知,若點(diǎn)是線段上一點(diǎn)(不含端點(diǎn)),過,

(1)若外接圓的直徑長為,求的值;

(2)求的最小值

(3)問點(diǎn)在何處時(shí),的面積最大?最大值為多少?

【答案】(1)3;(2)4;(3)當(dāng)的中點(diǎn)時(shí),的面積最大,最大值為.

【解析】

(1)根據(jù)面積為可得,然后由正弦定理可得;(2)用余弦定理得到,然后用重要不等式可得的范圍;(3)設(shè),然后根據(jù)面積關(guān)系將的面積用表示出來,再用一元二次函數(shù)求其最大值即可.

(1)在銳角中,

外接圓的直徑長為,

由正弦定理可得,,

(2)在中,由余弦定理得,

,

當(dāng)且僅當(dāng)時(shí)取等號,

;

的最小值為4

(3)設(shè),則,

,

,

,,

,,

,,

,

當(dāng)時(shí),的最大值為,

當(dāng)時(shí),三角形與三角形面積相等

的中點(diǎn),

當(dāng)的中點(diǎn)時(shí),的面積最大,最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,如果運(yùn)行結(jié)果為720,那么判斷框中應(yīng)填入(
A.k<6?
B.k<7?
C.k>6?
D.k>7?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,首項(xiàng),且,正項(xiàng)數(shù)列滿足.

(1)求數(shù)列,的通項(xiàng)公式;

(2)記,是否存在正整數(shù),使得對任意正整數(shù)恒成立?若存在,求正整數(shù)的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為了對教師教學(xué)水平和教師管理水平進(jìn)行評價(jià),從該校學(xué)生中選出300人進(jìn)行統(tǒng)計(jì).其中對教師教學(xué)水平給出好評的學(xué)生人數(shù)為總數(shù)的,對教師管理水平給出好評的學(xué)生人數(shù)為總數(shù)的,其中對教師教學(xué)水平和教師管理水平都給出好評的有120人.

(1)填寫教師教學(xué)水平和教師管理水平評價(jià)的列聯(lián)表:

對教師管理水平好評

對教師管理水平不滿意

合計(jì)

對教師教學(xué)水平好評

對教師教學(xué)水平不滿意

合計(jì)

請問是否可以在犯錯誤概率不超過0.001的前提下,認(rèn)為教師教學(xué)水平好評與教師管理水平好評有關(guān)?

(2)若將頻率視為概率,有4人參與了此次評價(jià),設(shè)對教師教學(xué)水平和教師管理水平全好評的人數(shù)為隨機(jī)變量.

①求對教師教學(xué)水平和教師管理水平全好評的人數(shù)的分布列(概率用組合數(shù)算式表示);

②求的數(shù)學(xué)期望和方差.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“微信運(yùn)動”已成為當(dāng)下熱門的健身方式,小明的微信朋友圈內(nèi)也有大量好友參與了“微信運(yùn)動”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

0~2000

2001~5000

5001~8000

8001~10000

1

2

3

6

8

0

2

10

6

2

(1)若采用樣本估計(jì)總體的方式,試估計(jì)小明的所有微信好友中每日走路步數(shù)超過5000步的概率;

(2)已知某人一天的走路步數(shù)超過8000步時(shí)被系統(tǒng)評定為“積極型”,否則為“懈怠型”.根據(jù)小明的統(tǒng)計(jì)完成下面的列聯(lián)表,并據(jù)此判斷是否有以上的把握認(rèn)為“評定類型”與“性別”有關(guān)?

積極型

懈怠型

總計(jì)

總計(jì)

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,平面底面,且,,的中點(diǎn).

1)證明:.

2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,四邊形ABCD為平行四邊形,AC,BD相交于點(diǎn)O,點(diǎn)E為PC的中點(diǎn),OP=OC,PA⊥PD.求證:
(1)直線PA∥平面BDE;
(2)平面BDE⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校在本校任選了一個(gè)班級,對全班50名學(xué)生進(jìn)行了作業(yè)量的調(diào)查,根據(jù)調(diào)查結(jié)果統(tǒng)計(jì)后,得到如下的列聯(lián)表,已知在這50人中隨機(jī)抽取2人,這2人都“認(rèn)為作業(yè)量大”的概率為.

認(rèn)為作業(yè)量大

認(rèn)為作業(yè)量不大

合計(jì)

男生

18

女生

17

合計(jì)

50

(Ⅰ)請完成上面的列聯(lián)表;

(Ⅱ)根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認(rèn)為“認(rèn)為作業(yè)量大”與“性別”有關(guān)?

(Ⅲ)若視頻率為概率,在全校隨機(jī)抽取4人,其中“認(rèn)為作業(yè)量大”的人數(shù)記為,求的分布列及數(shù)學(xué)期望.

附表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖的程序框圖,當(dāng)n≥2,n∈Z時(shí),fn(x)表示fn1(x)的導(dǎo)函數(shù),若輸入函數(shù)f1(x)=sinx﹣cosx,則輸出的函數(shù)fn(x)可化為(
A. sin(x+
B. sin(x﹣ )??
C.﹣ sin(x+
D.﹣ sin(x﹣

查看答案和解析>>

同步練習(xí)冊答案