已知函數(shù)

(1)當時,求函數(shù)的最大值;

(2)若函數(shù)沒有零點,求實數(shù)的取值范圍;

 

【答案】

(1) ;(2).

【解析】

試題分析:(1)通過對函數(shù)求導,判函數(shù)的單調(diào)性,可求解函數(shù)的最大值,需注意解題時要先寫出函數(shù)的定義域,切記“定義域優(yōu)先”原則;(2) 將的零點問題轉(zhuǎn)化為圖象交點個數(shù)問題,注意函數(shù)的圖象恒過定點,由圖象知當直線的斜率為時,直線與圖象沒有交點,當時,求出函數(shù)的最大值,讓最大值小于零即可說明函數(shù)沒有零點.

試題解析:(1)當時,       2分

定義域為,令,      

 ∵當,當,

內(nèi)是增函數(shù),上是減函數(shù)

∴當時,取最大值        5分

(2)①當,函數(shù)圖象與函數(shù)圖象有公共點,

∴函數(shù)有零點,不合要求;                             7分

②當時,       8分

,∵,

內(nèi)是增函數(shù),上是減函數(shù),  10分

的最大值是,

∵函數(shù)沒有零點,∴,,      11分

因此,若函數(shù)沒有零點,則實數(shù)的取值范圍    12分

考點:1.利用導數(shù)求函數(shù)的最值;2.函數(shù)與方程思想.3.數(shù)形結(jié)合思想.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù),其中    

(1)      當滿足什么條件時,取得極值?

(2)      已知,且在區(qū)間上單調(diào)遞增,試用表示出的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)

(1)當a=3時,求fx)的零點;

(2)求函數(shù)yf (x)在區(qū)間[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年廣東省深圳市寶安區(qū)高三上學期調(diào)研考試文科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù),.

(1)當為何值時,取得最大值,并求出其最大值;

(2)若,,求的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年福建省高三5月高考三輪模擬文科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù),

(1)當時,證明:對;

(2)若,且存在單調(diào)遞減區(qū)間,求的取值范圍;

(3)數(shù)列,若存在常數(shù),,都有,則稱數(shù)列有上界。已知,試判斷數(shù)列是否有上界.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江西省高三第三次模擬考試理科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù) ,

   (1)當  時,求函數(shù)  的最小值;

   (2)當  時,討論函數(shù)  的單調(diào)性;

   (3)是否存在實數(shù),對任意的 ,且,有,恒成立,若存在求出的取值范圍,若不存在,說明理由。

 

查看答案和解析>>

同步練習冊答案