已知函數(shù) ,.
(1)當(dāng) 時(shí),求函數(shù) 的最小值;
(2)當(dāng) 時(shí),討論函數(shù) 的單調(diào)性;
(3)是否存在實(shí)數(shù),對(duì)任意的 ,且,有,恒成立,若存在求出的取值范圍,若不存在,說(shuō)明理由。
(1)最小值為 .(2)(1)當(dāng)時(shí),若為增函數(shù);
為減函數(shù);為增函數(shù).
(2)當(dāng)時(shí),時(shí),為增函數(shù);
(3)當(dāng)時(shí),為增函數(shù);
為減函數(shù);
為增函數(shù).
【解析】本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。分析函數(shù)的單調(diào)性和函數(shù)的最值,和不等式的證明綜合運(yùn)用。
(1)利用已知函數(shù)求解函數(shù)的定義域,然后求解導(dǎo)函數(shù),分析導(dǎo)數(shù)大于零或者小于零的解得到單調(diào)區(qū)間。
(2)根據(jù)已知的函數(shù)的單調(diào)性,對(duì)于參數(shù)a分情況討論,得到最值。
(3)假設(shè)存在實(shí)數(shù)a滿足題意,則利用函數(shù)的 單調(diào)性得到a的范圍
解;(1)顯然函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012082415061525699081/SYS201208241506487987186384_DA.files/image013.png">, .........1分
當(dāng). ............2分
∴ 當(dāng),.
∴在時(shí)取得最小值,其最小值為 . ........ 4分
(2)∵, ....5分
∴(1)當(dāng)時(shí),若為增函數(shù);
為減函數(shù);為增函數(shù).
(2)當(dāng)時(shí),時(shí),為增函數(shù);
(3)當(dāng)時(shí),為增函數(shù);
為減函數(shù);
為增函數(shù). ............ 9分
(3)假設(shè)存在實(shí)數(shù)使得對(duì)任意的 ,且,有,恒成立,不妨設(shè),只要,即:
令,只要 在為增函數(shù)
又函數(shù).
考查函數(shù) ............10分
要使在恒成立,只要,
故存在實(shí)數(shù)時(shí),對(duì)任意的 ,且,有,恒成立,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3 |
π |
24 |
5π |
24 |
π |
24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
11π |
6 |
| ||
2 |
3 |
π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
xn+2 | xn-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
π |
2 |
A、f(x)=2sin(
| ||||
B、f(x)=2sin(
| ||||
C、f(x)=2sin(2x-
| ||||
D、f(x)=2sin(2x+
|
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com