【題目】(一)在函數(shù)圖象的學(xué)習(xí)中常常用到化歸轉(zhuǎn)化的思想,往往通過對(duì)一些已經(jīng)學(xué)習(xí)過的函數(shù)圖象的研究,進(jìn)一步遷移到其它函數(shù),例如函數(shù)與正弦函數(shù)就有密切的聯(lián)系,因?yàn)?/span>.只需將在軸下方的圖象翻折到上方,就得到的圖象.
(二)在研究函數(shù)零點(diǎn)問題時(shí),往往會(huì)將函數(shù)零點(diǎn)問題轉(zhuǎn)化為兩個(gè)函數(shù)圖象的交點(diǎn)問題.例如研究函數(shù)的零點(diǎn)就可以轉(zhuǎn)化為函數(shù)與函數(shù)的圖象交點(diǎn)來(lái)進(jìn)行處理,通過作圖不僅知道函數(shù)有且僅有一個(gè)零點(diǎn),還可以確定零點(diǎn).這體現(xiàn)了化歸轉(zhuǎn)化與數(shù)形結(jié)合的思想在函數(shù)研究中的應(yīng)用.
結(jié)合閱讀材料回答下面兩個(gè)問題:
作出函數(shù)的圖象;
利用作圖的方法驗(yàn)證函數(shù)有且僅有兩個(gè)零點(diǎn).若記兩個(gè)零點(diǎn)分別為,,證明:.(注:在同一坐標(biāo)中作圖)
【答案】圖象見解析;證明見解析.
【解析】
函數(shù)的圖象,只需將在軸下方的圖象翻折到上方,即可得到圖象;
函數(shù)的零點(diǎn)就可以轉(zhuǎn)化為函數(shù)與函數(shù)的圖象交點(diǎn)來(lái)進(jìn)行處理,進(jìn)而求證即可.
解:函數(shù)的圖象,只需將在軸下方的圖象翻折到上方,即圖象如下圖:
函數(shù)的零點(diǎn)就可以轉(zhuǎn)化為函數(shù)與函數(shù)的圖象交點(diǎn)來(lái)進(jìn)行處理,作圖如下:根據(jù)圖象可知,函數(shù)與函數(shù)的圖象有兩個(gè)交點(diǎn).即函數(shù)有且僅有兩個(gè)零點(diǎn).
證明:零點(diǎn),,,,
則,即,
整理得,.
則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出以下命題,其中真命題的個(gè)數(shù)是( )
①若“或”是假命題,則“且”是真命題;
②命題“若,則或”為真命題;
③已知空間任意一點(diǎn)和不共線的三點(diǎn),,,若,則,,,四點(diǎn)共面;
④直線與雙曲線交于,兩點(diǎn),若,則這樣的直線有3條;
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】漢字聽寫大會(huì)不斷創(chuàng)收視新高,為了避免“書寫危機(jī)”,弘揚(yáng)傳統(tǒng)文化,某市大約10萬(wàn)名市民進(jìn)行了漢字聽寫測(cè)試現(xiàn)從某社區(qū)居民中隨機(jī)抽取50名市民的聽寫測(cè)試情況,發(fā)現(xiàn)被測(cè)試市民正確書寫漢字的個(gè)數(shù)全部在160到184之間,將測(cè)試結(jié)果按如下方式分成六組:第1組,第2組,,第6組,如圖是按上述分組方法得到的頻率分布直方圖.
若電視臺(tái)記者要從抽取的市民中選1人進(jìn)行采訪,求被采訪人恰好在第2組或第6組的概率;
試估計(jì)該市市民正確書寫漢字的個(gè)數(shù)的平均數(shù)與中位數(shù);
已知第4組市民中有3名男性,組織方要從第4組中隨機(jī)抽取2名市民組成弘揚(yáng)傳統(tǒng)文化宣傳隊(duì),求至少有1名女性市民的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在楊輝三角形中,從第2行開始,除1以外,其它每一個(gè)數(shù)值是它上面的兩個(gè)數(shù)值之和,該三角形數(shù)陣開頭幾行如圖所示.
(1)在楊輝三角形中是否存在某一行,使該行中三個(gè)相鄰的數(shù)之比是3∶4∶5?若存在,試求出是第幾行;若不存在,請(qǐng)說(shuō)明理由;
(2)已知n,r為正整數(shù),且n≥r+3.求證:任何四個(gè)相鄰的組合數(shù)C,C,C,C不能構(gòu)成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高三年級(jí)有1000人,某次數(shù)學(xué)考試不同成績(jī)段的人數(shù).
(1)求該校此次數(shù)學(xué)考試平均成績(jī);
(2)計(jì)算得分超過141的人數(shù);
(3)甲同學(xué)每次數(shù)學(xué)考試進(jìn)入年級(jí)前100名的概率是,若本學(xué)期有4次考試, 表示進(jìn)入前100名的次數(shù),寫出的分布列,并求期望與方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雞的產(chǎn)蛋量與雞舍的溫度有關(guān),為了確定下一個(gè)時(shí)段雞舍的控制溫度,某企業(yè)需要了解雞舍的溫度 (單位:),對(duì)某種雞的時(shí)段產(chǎn)蛋量(單位:) 和時(shí)段投入成本(單位:萬(wàn)元)的影響,為此,該企業(yè)收集了7個(gè)雞舍的時(shí)段控制溫度和產(chǎn)蛋量的數(shù)據(jù),對(duì)數(shù)據(jù)初步處理后得到了如圖所示的散點(diǎn)圖和表中的統(tǒng)計(jì)量的值.
其中.
(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)更適宜作為該種雞的時(shí)段產(chǎn)蛋量關(guān)于雞舍時(shí)段控制溫度的回歸方程類型?(給判斷即可,不必說(shuō)明理由)
(2)若用作為回歸方程模型,根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)已知時(shí)段投入成本與的關(guān)系為,當(dāng)時(shí)段控制溫度為時(shí),雞的時(shí)段產(chǎn)蛋量及時(shí)段投入成本的預(yù)報(bào)值分別是多少?
附:①對(duì)于一組具有線性相關(guān)關(guān)系的數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中, , , 是的中點(diǎn),以為折痕將向上折起, 變?yōu)?/span>,且平面平面.
(Ⅰ)求證: ;
(Ⅱ)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】劉徽是我國(guó)魏晉時(shí)期著名的數(shù)學(xué)家,他編著的《海島算經(jīng)》中有一問題:“今有望海島,立兩表齊,高三丈,前后相去千步,令后表與前表相直。從前表卻行一百二十三步,人目著地取望島峰,與表末參合。從后表卻行百二十七步,人目著地取望島峰,亦與表末參合。問島高幾何?” 意思是:為了測(cè)量海島高度,立了兩根表,高均為5步,前后相距1000步,令后表與前表在同一直線上,從前表退行123步,人恰觀測(cè)到島峰,從后表退行127步,也恰觀測(cè)到島峰,則島峰的高度為( )(注:3丈=5步,1里=300步)
A. 4里55步 B. 3里125步 C. 7里125步 D. 6里55步
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com