【題目】如圖直三棱柱 中, 為邊長為2的等邊三角形, ,點 、 、 、 、 分別是邊 、 、 的中點,動點 在四邊形 內(nèi)部運動,并且始終有 平面 ,則動點 的軌跡長度為( )

A.
B.
C.
D.

【答案】D
【解析】因為 分別為 的中點,所以 , ,所以 平面 , 平面 ,又因為 ,所以平面 平面 ,要使 平面 ,則 平面 ,所以點 的軌跡為線段 ,點 的軌跡長度為 .
故本題正確答案為 .
因為 H , F , M 分別為 A ' B ' , A B , B C 的中點,連接HF,FM,HM, 所以 F M / / A C , H F / / A A ' ,所以 F M / / 平面 A C C ' A ' , H F / / 平面 A C C ' A ' ,又因為 F M ∩ H F = F ,所以平面 H F M / / 平面 A C C ' A ' ,P平面HFM, 所以MP / / 平面 A C C ' A ' ,所以點 P 的軌跡為線段 H F ,HF=4,所以選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左、右焦點分別為 , .過 且斜率為 的直線 與橢圓 相交于點 , .當 時,四邊形 恰在以 為直徑,面積為 的圓上.
(Ⅰ)求橢圓 的方程;
(Ⅱ)若 ,求直線 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) 圖象上不同兩點 , 處切線的斜率分別是 ,規(guī)定 為線段 的長度)叫做曲線 在點 之間的“彎曲度”,給出以下命題:
①函數(shù) 圖象上兩點 的橫坐標分別為1和2,則 ;
②存在這樣的函數(shù),圖象上任意兩點之間的“彎曲度”為常數(shù);
③設(shè)點 是拋物線 上不同的兩點,則 ;
④設(shè)曲線 是自然對數(shù)的底數(shù))上不同兩點 ,且 ,若 恒成立,則實數(shù) 的取值范圍是
其中真命題的序號為(將所有真命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3 x2+ x+ ,則 )的值為(
A.2016
B.1008
C.504
D.2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+bx+1(a,b為實數(shù),a≠0,x∈R).
(1)若函數(shù)f(x)的圖象過點(-2,1),且方程f(x)=0有且只有一個根,求f(x)的表達式;
(2)在(1)的條件下,當x∈[-1,2]時,g(x)=f(x)-kx是單調(diào)函數(shù),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .
(1)證明: ;
(2)若對任意 ,不等式 恒成立,求實數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)有下面四個命題
p1:若復(fù)數(shù)z滿足 ∈R,則z∈R;
p2:若復(fù)數(shù)z滿足z2∈R,則z∈R;
p3:若復(fù)數(shù)z1 , z2滿足z1z2∈R,則z1= ;
p4:若復(fù)數(shù)z∈R,則 ∈R.
其中的真命題為( 。
A.p1 , p3
B.p1 , p4
C.p2 , p3
D.p2 , p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=2x2-ln x在其定義域內(nèi)的一個子區(qū)間(k-1,k+1)內(nèi)不是單調(diào)函數(shù),則實數(shù)k的取值范圍是( )
A.[1,+∞)
B.[1,2)
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓 )的焦距與橢圓 的短軸長相等,且 的長軸長相等,這兩個橢圓在第一象限的交點為 ,直線 經(jīng)過 軸正半軸上的頂點 且與直線 為坐標原點)垂直, 的另一個交點為 交于 , 兩點.

(1)求 的標準方程;
(2)求

查看答案和解析>>

同步練習(xí)冊答案