已知拋物線D的頂點是橢圓Q:
x2
4
+
y2
3
=1
的中心O,焦點與橢圓Q的右焦點重合,點A(x1,y1),B(x2,y2)(x1x2≠0)是拋物線D上的兩個動點,且|
OA
+
OB
|=|
OA
-
OB
|
(Ⅰ)求拋物線D的方程及y1y2的值;
(Ⅱ)求線段AB中點軌跡E的方程;
(Ⅲ)求直線y=
1
2
x
與曲線E的最近距離.
(I)由題意,可設(shè)拋物線方程為y2=2px
由a2-b2=4-3=1?c=1.
∴拋物線的焦點為(1,0),∴p=2
∴拋物線方程為y2=4x(2分)
∵點A(x1,y1),B(x2,y2)(x1x2≠0)是拋物線上的兩個動點,
所以:y12=4x1,y22=4x2
∴(y1y22=16x1x2
|
OA
+
OB
|=|
OA
-
OB
|
 
OA
OB
,
∴x1x2+y1y2=0.
(y1y2)2
16
+y1y2
=0?y1y2(
y1y2
16
+1)
=0
∵y1y2≠0
∴y1y2=-16.
(Ⅱ)∵|
OA
+
OB
|=|
OA
-
OB
|
OA
OB
,
設(shè)OA:y=kx,OB:y=-
1
k
x
y=kx
y2=4x
?A(
4
k2
,
4
k
).同理可得B(4k2,-4k)
設(shè)AB的中點為(x,y),則由
x=
2
k2
+2k 2
y=
2
k
-2k
消去k,得y2=2x-8.(10分)
(Ⅲ)設(shè)與直線y=
1
2
x平行的直線x-2y+m=0.
由題設(shè)可知直線x-2y+m=0應(yīng)與曲線E:y2=2x-8相切
y2=2x-8
x-2y+m=0
消去x整理得:y2-4y+2m+8=0.
所以△=16-4(2m+8)=0?m=-2
∴直線y=
1
2
x 與x-2y-2=0之間的距離即為直線y=
1
2
x
與曲線E的最近距離.
所以所求距離為:d=
|0-(-2)|
12+(-2)2
=
2
5
5
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線D的頂點是橢圓Q:
x2
4
+
y2
3
=1
的中心O,焦點與橢圓Q的右焦點重合,點A(x1,y1),B(x2,y2)(x1x2≠0)是拋物線D上的兩個動點,且|
OA
+
OB
|=|
OA
-
OB
|
(Ⅰ)求拋物線D的方程及y1y2的值;
(Ⅱ)求線段AB中點軌跡E的方程;
(Ⅲ)求直線y=
1
2
x
與曲線E的最近距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線D的頂點是橢圓
x2
4
+
y2
3
=1
的中心,焦點與該橢圓的右焦點重合.
(Ⅰ)求拋物線D的方程;
(Ⅱ)已知動直線l過點P(4,0),交拋物線D于A、B兩點.(i)若直線l的斜率為1,求AB的長;(ii)是否存在垂直于x軸的直線m被以AP為直徑的圓M所截得的弦長恒為定值?如果存在,求出m的方程;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•海珠區(qū)一模)已知拋物線D的頂點是橢圓
x2
4
+
y2
3
=1的中心,焦點與該橢圓的右焦點重合.
(1)求拋物線D的方程;
(2)已知動直線l過點P(4,0),交拋物線D于A、B兩點,坐標(biāo)原點O為PQ中點,求證:∠AQP=∠BQP;
(3)是否存在垂直于x軸的直線m被以AP為直徑的圓所截得的弦長恒為定值?如果存在,求出m的方程;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線D的頂點是橢圓
x2
4
+
y2
3
=1
的中心,焦點與該橢圓的右焦點重合.
(1)求拋物線D的方程;
(2)已知直線l過點P(4,0)交拋物線于A,B兩點,是否存在垂直于x軸的直線x=m被以AP為直徑的圓M所截得的弦長恒為定值?如果存在,求出直線x=m的方程;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆度寧夏高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷 題型:解答題

已知拋物線D的頂點是橢圓Q:的中心O,焦點與橢圓Q的右焦點重合,點是拋物線D上的兩個動點,且

   (1)求拋物線D的方程及y1y2的值;

   (2)求線段AB中點軌跡E的方程;

   (3)在曲線E上尋找一點,使得該點與直線的距離最近.

 

查看答案和解析>>

同步練習(xí)冊答案