已知函數(shù)f(x)=2x的反函數(shù)為y=f-1(x).若f-1(a)+f-1(b)=4,則
1
a
+
4
b
的最小值為(  )
A、
5
4
B、
9
4
C、
9
18
D、1
分析:本題考查反函數(shù)的概念、反函數(shù)的求法、指數(shù)式和對數(shù)式的互化、對數(shù)的運算、由基本不等式
a+b
2
ab
求最值等相關(guān)知識.根據(jù)y=2x可得f-1(x)的解析式,由此代入f-1(a)+f-1(b)=4可得a、b的關(guān)系式,根據(jù)基本不等式
a+b
2
ab
即可得到
1
a
+
4
b
最小值.
解答:解析:函數(shù)y=f-1(x)=log2x,
又f-1(a)+f-1(b)=4
?log2a+log2b=4
?ab=16,
1
a
+
4
b
≥2
4
ab
=1
,
故選D.
點評:本題小巧靈活,用到的知識比較豐富,具有綜合性特點,涉及了反函數(shù)、指數(shù)式和對數(shù)式的互化、對數(shù)的運算、由基本不等式
a+b
2
ab
求最值等多方面的知識,是這些內(nèi)容的有機融合,思維密度較大;解題中用注意對數(shù)的運算公式化簡log2a+log2b=4得a、b的關(guān)系式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
1
x
,(x>0),若存在實數(shù)a,b(a<b),使y=f(x)的定義域為(a,b)時,值域為(ma,mb),則實數(shù)m的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2+log0.5x(x>1),則f(x)的反函數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時,函數(shù)的圖象與x軸有兩個不同的交點;
(2)如果函數(shù)的一個零點在原點,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海)已知函數(shù)f(x)=2-|x|,無窮數(shù)列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講
已知函數(shù)f(x)=2|x-2|-x+5,若函數(shù)f(x)的最小值為m
(Ⅰ)求實數(shù)m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案