【題目】如圖所示,菱形ABCD與正三角形BCE的邊長均為2,它們所在的平面互相垂直,DF⊥平面ABCD且DF.
(1)求證:EF//平面ABCD;
(2)若∠ABC=∠BCE,求二面角A﹣BF﹣E的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)要線面平行,即證直線在面外且直線平行于平面內(nèi)的一條直線,故過點E作EH⊥BC于構(gòu)造平行四邊形即可得到線線平行.
(2)連接HA,根據(jù)題意,AH⊥BC,以H為原點,HB,HA,HE為x,y,z軸建立空間直角坐標系,分別求出平面BAF和平面BEF的法向量,利用法向量求出二面角的余弦值.
(1)過點E作EH⊥BC,連接HD,EH,
因為平面ABCD⊥平面BCE,EH平面BCE,
平面ABCD∩平面BCE=BC,
所以EH⊥平面ABCD,
因為FD⊥ABCD,FD,
所以FD//EH,FD=EH,故平行四邊形EHDF,
所以EF//HD,
由EF平面ABCD,HD平面ABCD,
所以EF//平面ABCD;
(2)連接HA,根據(jù)題意,AH⊥BC,
如圖:
以H為原點,HB,HA,HE為x,y,z軸建立空間直角坐標系,
則A(0,,0),B(1,0,0),E(0,,),F(-2,,),
則(﹣1,,0),(﹣1,0,),(﹣3,,),
設(shè)平面BAF的法向量為(x,y,z),
,得(,1,2),
設(shè)平面BEF的法向量為,
由,得,
由cos,
所以二面角A﹣FB﹣E的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)在上的單調(diào)區(qū)間;
(2)用表示中的最大值,為的導(dǎo)函數(shù),設(shè)函數(shù),若在上恒成立,求實數(shù)的取值范圍;
(3)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱柱ABC﹣A1B1C1中,平面AA1B1B⊥平面ABC,AB=AA1=A1B=4,BC=2,AC=2,點F為AB的中點,點E為線段A1C1上的動點.
(1)求證:BC⊥平面A1EF;
(2)若∠B1EC1=60°,求四面體A1B1EF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:,動直線l與橢圓E交于不同的兩點,,且△AOB的面積為1,其中O為坐標原點.
(1)證明:為定值;
(2)設(shè)線段AB的中點為M,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C:1(a0,b0)的左右焦點分別為F1,F2,點O為坐標原點,點P在雙曲線的右支上,且滿足|F1F2|=2|OP|.若直線PF2與雙曲線C只有一個交點,則雙曲線C的離心率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新型冠狀病毒屬于屬的冠狀病毒,有包膜,顆粒常為多形性,其中包含著結(jié)構(gòu)為數(shù)學(xué)模型的,,人體肺部結(jié)構(gòu)中包含,的結(jié)構(gòu),新型冠狀病毒肺炎是由它們復(fù)合而成的,表現(xiàn)為.則下列結(jié)論正確的是( )
A.若,則為周期函數(shù)
B.對于,的最小值為
C.若在區(qū)間上是增函數(shù),則
D.若,,滿足,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ex﹣ax+a(a∈R),其圖象與x軸交于A(x1,0),B(x2,0)兩點,且x1<x2.
(1)求a的取值范圍;
(2)證明:f′()<0(f′(x)為函數(shù)f(x)的導(dǎo)函數(shù));
(3)設(shè)點C在函數(shù)y=f(x)的圖象上,且△ABC為等腰直角三角形,記t,求(a﹣1)(t﹣1)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,左、右焦點分別是,橢圓上短軸的一個端點與兩個焦點構(gòu)成的三角形的面積為;
(1)求橢圓的方程;
(2)過作垂直于軸的直線交橢圓于兩點(點在第二象限),是橢圓上位于直線兩側(cè)的動點,若,求證:直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:過點A,兩個焦點為(-1,0),(1,0)。
(Ⅰ)求橢圓C的方程;
(Ⅱ)E,F是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個定值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com