已知橢圓G:.過點(diǎn)(m,0)作圓的切線l交橢圓G于A,B兩點(diǎn).
(1)求橢圓G的焦點(diǎn)坐標(biāo)和離心率;
(2)將表示為m的函數(shù),并求的最大值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓過點(diǎn)和點(diǎn).
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)的直線與橢圓交于兩點(diǎn),且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率,且直線是拋物線的一條切線.
(1)求橢圓的方程;
(2)點(diǎn)P 為橢圓上一點(diǎn),直線,判斷l(xiāng)與橢圓的位置關(guān)系并給出理由;
(3)過橢圓上一點(diǎn)P作橢圓的切線交直線于點(diǎn)A,試判斷線段AP為直徑的圓是否恒過定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線C1:x2=y,圓C2:x2+(y-4)2=1的圓心為點(diǎn)M
(1)求點(diǎn)M到拋物線C1的準(zhǔn)線的距離;
(2)已知點(diǎn)P是拋物線C1上一點(diǎn)(異于原點(diǎn)),過點(diǎn)P作圓C2的兩條切線,交拋物線C1于A,B兩點(diǎn),若過M,P兩點(diǎn)的直線l垂直于AB,求直線l的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C: (a>b>0)的離心率為,且橢圓C上一點(diǎn)與兩個(gè)焦點(diǎn)F1,F(xiàn)2構(gòu)成的三角形的周長為2+2.
(1)求橢圓C的方程;
(2)過右焦點(diǎn)F2作直線l 與橢圓C交于A,B兩點(diǎn),設(shè),若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的一個(gè)頂點(diǎn)和兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為4.
(1)求橢圓的方程;
(2)已知直線與橢圓交于、兩點(diǎn),試問,是否存在軸上的點(diǎn),使得對任意的,為定值,若存在,求出點(diǎn)的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖已知拋物線:過點(diǎn),直線交于,兩點(diǎn),過點(diǎn)且平行于軸的直線分別與直線和軸相交于點(diǎn),.
(1)求的值;
(2)是否存在定點(diǎn),當(dāng)直線過點(diǎn)時(shí),△與△的面積相等?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的短半軸長為,動(dòng)點(diǎn)在直線(為半焦距)上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以為直徑且被直線截得的弦長為的圓的方程;
(3)設(shè)是橢圓的右焦點(diǎn),過點(diǎn)作的垂線與以為直徑的圓交于點(diǎn),
求證:線段的長為定值,并求出這個(gè)定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知?jiǎng)狱c(diǎn)M(x,y)到直線l:x = 4的距離是它到點(diǎn)N(1,0)的距離的2倍.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)過點(diǎn)P(0,3)的直線m與軌跡C交于A, B兩點(diǎn). 若A是PB的中點(diǎn), 求直線m的斜率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com