【題目】利用計(jì)算機(jī)產(chǎn)生120個(gè)隨機(jī)正整數(shù),其最高位數(shù)字(如:34的最高位數(shù)字為3,567的最高位數(shù)字為5)的頻數(shù)分布圖如圖所示,若從這120個(gè)正整數(shù)中任意取出一個(gè),設(shè)其最高位數(shù)字為d(d=1,2,…,9)的概率為P,下列選項(xiàng)中,最能反映P與d的關(guān)系的是( )
A.P=lg(1+ )
B.P=
C.P=
D.P= ×
【答案】A
【解析】解:當(dāng)d=5時(shí),其概率為P= = ,
對(duì)于B,P= ,
對(duì)于C,P=0,
對(duì)于D,P= ,
故B,C,D均不符合,
故選:A.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解頻率分布直方圖的相關(guān)知識(shí),掌握頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過(guò)作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ax(a∈R).
(1)若曲線y=f(x)存在一條切線與直線y=x平行,求a的取值范圍;
(2)當(dāng)0<a<2時(shí),若f(x)在[a,2]上的最大值為﹣ ,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=xex﹣lnx(ln2≈﹣0.693, ≈1.648,均為不足近似值)
(1)當(dāng)x≥1時(shí),判斷函數(shù)f(x)的單調(diào)性;
(2)證明:當(dāng)x>0時(shí),不等式f(x)> 恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:(x﹣ )2+(y﹣1)2=1和兩點(diǎn)A(﹣t,0),B(t,0)(t>0),若圓C上存在點(diǎn)P,使得∠APB=90°,則當(dāng)t取得最大值時(shí),點(diǎn)P的坐標(biāo)是( )
A.( , )
B.( , )
C.( , )
D.( , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: + =1(a>b>0)經(jīng)過(guò)點(diǎn)(1, ),離心率為 ,點(diǎn)A為橢圓C的右頂點(diǎn),直線l與橢圓相交于不同于點(diǎn)A的兩個(gè)點(diǎn)P(x1 , y1),Q(x2 , y2).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng) ⊥ =0時(shí),求△OPQ面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(x﹣1)ex+ (其中a∈R)有兩個(gè)零點(diǎn),則a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) |﹣ |,其中﹣3≤a≤1.
(Ⅰ)當(dāng)a=1時(shí),解不等式f(x)≥1;
(Ⅱ)對(duì)于任意α∈[﹣3,1],不等式f(x)≥m的解集為空集,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA⊥平面AC,四邊形ABCD是矩形,E、F分別是AB、PD的中點(diǎn).
(Ⅰ)求證:AF∥平面PCE;
(Ⅱ)若二面角P﹣CD﹣B為45°,AD=2,CD=3,求點(diǎn)F到平面PCE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知C1: (θ為參數(shù)),將C1上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長(zhǎng)為原來(lái)的 和2倍后得到曲線C2以平面直角坐標(biāo)系xOy的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知直線l:ρ( cosθ+sinθ)=4
(1)試寫出曲線C1的極坐標(biāo)方程與曲線C2的參數(shù)方程;
(2)在曲線C2上求一點(diǎn)P,使點(diǎn)P到直線l的距離最小,并求此最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com