已知橢圓C的中心在原點,一個焦點為F(0,),且長軸長與短軸長的比是∶1.
(1)求橢圓C的方程;
(2)若橢圓C上在第一象限的一點P的橫坐標為1,過點P作傾斜角互補的兩條不同的直線PA,PB分別交橢圓C于另外兩點A,B,求證:直線AB的斜率為定值.
科目:高中數(shù)學 來源: 題型:解答題
設拋物線的焦點為,點,線段的中點在拋物線上. 設動直線與拋物線相切于點,且與拋物線的準線相交于點,以為直徑的圓記為圓.
(1)求的值;
(2)證明:圓與軸必有公共點;
(3)在坐標平面上是否存在定點,使得圓恒過點?若存在,求出的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
給定橢圓C:+=1(a>b>0),稱圓心在原點O,半徑為的圓是橢圓C的“準圓”.若橢圓C的一個焦點為F(,0),其短軸上的一個端點到F的距離為.
(1)求橢圓C的方程和其“準圓”的方程.
(2)點P是橢圓C的“準圓”上的一個動點,過動點P作直線l1,l2使得l1,l2與橢圓C都只有一個交點,且l1,l2分別交其“準圓”于點M,N.
①當P為“準圓”與y軸正半軸的交點時,求l1,l2的方程;
②求證:|MN|為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知中心在原點的橢圓C的一個焦點為F(4,0),長軸端點到較近焦點的距離為1,A(x1,y1),B(x2,y2)(x1≠x2)為橢圓上不同的兩點.
(1)求橢圓C的方程.
(2)若x1+x2=8,在x軸上是否存在一點D,使||=||?若存在,求出D點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓:的離心率為,右焦點到直線的距離為.
(1)求橢圓的方程;
(2)過橢圓右焦點F2斜率為()的直線與橢圓相交于兩點,為橢圓的右頂點,直線分別交直線于點,線段的中點為,記直線的斜率為,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知雙曲線的中心為原點,左、右焦點分別為、,離心率為,點是直線上任意一點,點在雙曲線上,且滿足.
(1)求實數(shù)的值;
(2)證明:直線與直線的斜率之積是定值;
(3)若點的縱坐標為,過點作動直線與雙曲線右支交于不同的兩點、,在線段上去異于點、的點,滿足,證明點恒在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,直線,拋物線,已知點在拋物線上,且拋物線上的點到直線的距離的最小值為.
(1)求直線及拋物線的方程;
(2)過點的任一直線(不經(jīng)過點)與拋物線交于、兩點,直線與直線相交于點,記直線,,的斜率分別為,, .問:是否存在實數(shù),使得?若存在,試求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
拋物線的方程為,過拋物線上一點()作斜率為的兩條直線分別交拋物線于兩點(三點互不相同),且滿足(且).
(1)求拋物線的焦點坐標和準線方程;
(2)設直線上一點,滿足,證明線段的中點在軸上;
(3)當=1時,若點的坐標為,求為鈍角時點的縱坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系xOy中,已知對于任意實數(shù)k,直線(k+1)x+(k-)y-(3k+)=0恒過定點F.設橢圓C的中心在原點,一個焦點為F,且橢圓C上的點到F的最大距離為2+.
(1)求橢圓C的方程;
(2)設(m,n)是橢圓C上的任意一點,圓O:x2+y2=r2(r>0)與橢圓C有4個相異公共點,試分別判斷圓O與直線l1:mx+ny=1和l2:mx+ny=4的位置關系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com