如圖,已知ABCD是邊長為2的正方形,DE⊥平面ABCD,BF⊥平面ABCD,且FB=2DE=2.
(1)求證:平面AEC⊥平面AFC;
(2)求多面體ABCDEF的體積.
分析:(1)以D為坐標(biāo)原點,DA,DC,DE分別為X,Y,Z軸正言論自由建立空間直角坐標(biāo)系,分別求出各點坐標(biāo),進(jìn)而求出平面AEC和平面AFC的法向量的坐標(biāo),代入向量夾角公式,根據(jù)兩個法向量的數(shù)量積為0,即可得到平面AEC⊥平面AFC;
(2)根據(jù)面面平行的性質(zhì)定理,BC即為平面ABFE上的高,求出△AEF的面積,并將其代入棱錐體積公式,即可得到答案.
解答:解:(1)證明:建立如圖坐標(biāo)系
∴D(0,0,0),E(0,0,1),A(2,0,0),C(0,2,0),F(xiàn)(2,2,2)
AE
=(-2,0,1),
EC
=(0,2,-1)
AF
=(0,2,2),
FC
=(-2,0,-2)

設(shè)
m
為面AEC法向量 
m
=(x1y1,z1)
-2x1+z1=0
2y1-z1=0
m
=(1,1,2)

設(shè)
n
為面AFC法向量 
n
=(x2y2,z2)
2y2+2z2=0
-2x2-2z2=0
n
=(1,1,-1)
cos<
m
n
>=
1+1-2
4
3
=0
m
n

∴面AEC⊥面AFC.
(2)S△AEF=
1
2
•AE•EF=
1
2

∵平面ABEF⊥平面ABCD
即BC⊥AB
而平面ABEF∩平面ABCD=AB
∴BC⊥平面ABFE
∴VC-AEF=
1
3
•S△AEF•BC=
1
6
點評:本題考查的知識點是棱錐的體積公式,用向量語言表述面面垂直關(guān)系,其中(1)中用向量法證明面面垂直的關(guān)鍵是建立適當(dāng)?shù)目臻g直角坐標(biāo)法,(2)中求棱錐的體積,確定底面和高是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知ABCD是邊長為a的正方形,E,F(xiàn)分別是AB,AD的中點,CG⊥面ABCD,CG=a.
(1)求證:BD∥EFG;
(2)求點B到面GEF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知ABCD是底角為30°的等腰梯形,AD=2
3
,BC=4
3
,取兩腰中點M、N分別交對角線BD、AC于G、H,則
AG
AC
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知ABCD是邊長為1的正方形,AF⊥平面ABCD,CE∥AF,CE=λAF(λ>1).
(Ⅰ)證明:BD⊥EF;
(Ⅱ)若AF=1,且直線BE與平面ACE所成角的正弦值為
3
2
10
,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知ABCD是矩形,PD⊥平面ABCD,PB=2,PB與平面ABCD所成的角為30°,PB與平面PCD所成的角為45°,求:
(1)PB與CD所成角的大。
(2)二面角C-PB-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知ABCD是正方形,DE⊥平面ABCD,BF⊥平面ABCD,且AB=FB=2DE.
(Ⅰ)求證:平面AEC⊥平面AFC;
(Ⅱ)求直線EC與平面BCF所成的角;
(Ⅲ)問在EF上是否存在一點M,使三棱錐M-ACF是正三棱錐?若存在,試確定M點的位置;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案